手写决策树ID3算法(python)

2024-08-31 03:32

本文主要是介绍手写决策树ID3算法(python),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种。看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多。

优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配的问题。
使用数据类型:数值型和标称型。
简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”。

一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别。
为了解决这个问题,同学们马上简单的统计了7位同学的相关特征,数据如下:

机智的同学A想了想,先根据头发判断,若判断不出,再根据声音判断,于是画了一幅图,如下:

于是,一个简单、直观的决策树就这么出来了。头发长、声音粗就是男生;头发长、声音细就是女生;头发短、声音粗是男生;头发短、声音细是女生。
原来机器学习中决策树就这玩意,这也太简单了吧。。。
这时又蹦出个同学B,想先根据声音判断,然后再根据头发来判断,如是大手一挥也画了个决策树:

同学B的决策树:首先判断声音,声音细,就是女生;声音粗、头发长是男生;声音粗、头发长是女生。

那么问题来了:同学A和同学B谁的决策树好些?计算机做决策树的时候,面对多个特征,该如何选哪个特征为最佳的划分特征?

划分数据集的大原则是:将无序的数据变得更加有序。
我们可以使用多种方法划分数据集,但是每种方法都有各自的优缺点。于是我们这么想,如果我们能测量数据的复杂度,对比按不同特征分类后的数据复杂度,若按某一特征分类后复杂度减少的更多,那么这个特征即为最佳分类特征。
Claude Shannon 定义了熵(entropy)和信息增益(information gain)。
用熵来表示信息的复杂度,熵越大,则信息越复杂。公式如下:

信息增益(information gain),表示两个信息熵的差值。
首先计算未分类前的熵,总共有8位同学,男生3位,女生5位。
熵(总)=-3/8log2(3/8)-5/8log2(5/8)=0.9544
接着分别计算同学A和同学B分类后信息熵。
同学A首先按头发分类,分类后的结果为:长头发中有1男3女。短头发中有2男2女。
熵(同学A长发)=-1/4log2(1/4)-3/4log2(3/4)=0.8113
熵(同学A短发)=-2/4log2(2/4)-2/4log2(2/4)=1
熵(同学A)=4/80.8113+4/81=0.9057
信息增益(同学A)=熵(总)-熵(同学A)=0.9544-0.9057=0.0487
同理,按同学B的方法,首先按声音特征来分,分类后的结果为:声音粗中有3男3女。声音细中有0男2女。
熵(同学B声音粗)=-3/6log2(3/6)-3/6log2(3/6)=1
熵(同学B声音粗)=-2/2log2(2/2)=0
熵(同学B)=6/81+2/8*0=0.75
信息增益(同学B)=熵(总)-熵(同学B)=0.9544-0.75=0.2087

按同学B的方法,先按声音特征分类,信息增益更大,区分样本的能力更强,更具有代表性。
以上就是决策树ID3算法的核心思想。
接下来用python代码来实现ID3算法:
 

#决策树ID3算法
from math import log
import operatordef calcShannonEnt(dataSet):  # 计算数据的熵(entropy)numEntries=len(dataSet)  # 数据条数labelCounts={}for featVec in dataSet:currentLabel=featVec[-1] # 每行数据的最后一个字(类别)if currentLabel not in labelCounts.keys():labelCounts[currentLabel]=0labelCounts[currentLabel]+=1  # 统计有多少个类以及每个类的数量shannonEnt=0for key in labelCounts:prob=float(labelCounts[key])/numEntries # 计算单个类的熵值shannonEnt-=prob*log(prob,2) # 累加每个类的熵值return shannonEntdef createDataSet1():    # 创造示例数据dataSet = [['长', '粗', '男'],['短', '粗', '男'],['短', '粗', '男'],['长', '细', '女'],['短', '细', '女'],['短', '粗', '女'],['长', '粗', '女'],['长', '粗', '女']]labels = ['头发','声音']  #两个特征return dataSet,labelsdef splitDataSet(dataSet,axis,value): # 按某个特征分类后的数据retDataSet=[]for featVec in dataSet:if featVec[axis]==value:reducedFeatVec =featVec[:axis]reducedFeatVec.extend(featVec[axis+1:])retDataSet.append(reducedFeatVec)return retDataSetdef chooseBestFeatureToSplit(dataSet):  # 选择最优的分类特征numFeatures = len(dataSet[0])-1baseEntropy = calcShannonEnt(dataSet)  # 原始的熵bestInfoGain = 0bestFeature = -1for i in range(numFeatures):featList = [example[i] for example in dataSet]uniqueVals = set(featList)newEntropy = 0for value in uniqueVals:subDataSet = splitDataSet(dataSet,i,value)prob =len(subDataSet)/float(len(dataSet))newEntropy +=prob*calcShannonEnt(subDataSet)  # 按特征分类后的熵infoGain = baseEntropy - newEntropy  # 原始熵与按特征分类后的熵的差值if (infoGain>bestInfoGain):   # 若按某特征划分后,熵值减少的最大,则次特征为最优分类特征bestInfoGain=infoGainbestFeature = ireturn bestFeaturedef majorityCnt(classList):    #按分类后类别数量排序,比如:最后分类为2男1女,则判定为男;classCount={}for vote in classList:if vote not in classCount.keys():classCount[vote]=0classCount[vote]+=1sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)return sortedClassCount[0][0]def createTree(dataSet,labels):classList=[example[-1] for example in dataSet]  # 类别:男或女if classList.count(classList[0])==len(classList):return classList[0]if len(dataSet[0])==1:return majorityCnt(classList)bestFeat=chooseBestFeatureToSplit(dataSet) #选择最优特征bestFeatLabel=labels[bestFeat]myTree={bestFeatLabel:{}} #分类结果以字典形式保存del(labels[bestFeat])featValues=[example[bestFeat] for example in dataSet]uniqueVals=set(featValues)for value in uniqueVals:subLabels=labels[:]myTree[bestFeatLabel][value]=createTree(splitDataSet\(dataSet,bestFeat,value),subLabels)return myTreedef predict(mytree, tips, list1):res = []for item in list1:tmp_tree = mytreeiter = tmp_tree.__iter__()     while 1:try:key = iter.__next__()if isinstance(key, str) and (key == "男" or key == "女"):res.append(key)breakv = tmp_tree[key]index = tips[key]item_res = item[index]tmp_tree = v[item_res]iter = tmp_tree.__iter__()except StopIteration:breakreturn resif __name__=='__main__':dataSet, labels=createDataSet1()  # 创造示列数据mytree = createTree(dataSet, labels)print(mytree)  # 输出决策树模型结果#预测tips = {"头发":0, "声音":1}res = predict(mytree, tips, [['长', '粗'], ['短', '粗']])print(res)

 

 

 

这篇关于手写决策树ID3算法(python)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122762

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型: