【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究

2024-08-31 02:44

本文主要是介绍【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.算法原理
    • 2.改进点
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.算法原理

【智能算法】樽海鞘群算法(SSA)原理及实现

2.改进点

无标度网络策略

复杂网络在图论中可以用边和节点表示, Barabasi 等于1999年通过分析大量的数据提出了无标度网络模型. 该网络的度分布满足幂律分布, 这种网络结构已经在现实的世界中得到证明,如互联网、大脑神经系统网络和生物网络。产生无标度网络的经典模型便是 BA 模型,步骤分为:

在这里插入图片描述

首先构建出一个无标度网络结构来映射跟随者的关系, 接下来通过 BA 模型生成与跟随者数量相同的网络。跟随者可在网络中随机选择邻居ρ 进行位置更新:
x j i = 1 2 ( x j i + x j ρ ) , ρ ∈ N e i g h b o r ( i ) (1) x_{j}^{i}=\frac{1}{2}( x_{j}^{i}+x_{j}^{\rho} ) ,\rho\in\mathrm{Neighbor}(i)\tag{1} xji=21(xji+xjρ),ρNeighbor(i)(1)

自适应权重策略

为了对整个樽海鞘群进行动态调整, 考虑集成自适应权重策略。权重w:
ω = ( 1 − t T m a x ) e − c c = ∑ i = 1 N ∑ j = 1 dim ⁡ ( x j i − x ‾ j ) 2 × 1 N × D (2) \begin{aligned} &\left.\omega=\left(\begin{array}{c}1-\frac{t}{T_{\mathrm{~max}}}\end{array}\right.\right)\mathrm{e}^{-c} \\ &c=\sum_{i=1}^{N}\sqrt{\sum_{j=1}^{\dim}( x_{j}^{i}-\overline{x}^{j} )^{2}}\times\frac{1}{N\times D} \end{aligned}\tag{2} ω=(1T maxt)ecc=i=1Nj=1dim(xjixj)2 ×N×D1(2)

其中,搜索空间的最长对角线的距离为:
D = ∑ j = 1 dim ⁡ ( u b j − l b j ) 2 (3) D=\sqrt{\sum_{j=1}^{\dim}(ub_j-lb_j)^2}\tag{3} D=j=1dim(ubjlbj)2 (3)

考虑到优化整个樽海鞘群算法的性能, 将此处的自适应权重策略与无标度网络策略结合得出一个最终的追随者位置更新公式:
x j i = 1 2 ( ω × x j i + r 1 × x j ρ + r 2 × F j ) , ρ ∈ Neighbor ( i ) (4) x_j^i=\frac12(\omega\times x_j^i+r_1\times x_j^\rho+r_2\times F_j),\rho\in\text{Neighbor}(i)\tag{4} xji=21(ω×xji+r1×xjρ+r2×Fj),ρNeighbor(i)(4)

黄金正弦算子变异策略

黄金正弦算法对整个单位圆的搜索便类似于整个搜索空间内的寻优过程, 同时取黄金分割数以便搜索可以产生较好结果的区域并且缩小搜索的空间, 加快了算法的收敛速度. 黄金正弦算子:
X i ( t + 1 ) = X i ( t ) ∣ sin ⁡ R 1 ∣ + R 2 sin ⁡ ( R 1 ) ∣ a X i − b X i ( t ) ∣ (5) X_{i}\left(t+1\right)=X_{i}\left(t\right)\left|\sin R_{1}\left|+R_{2}\sin\left(R_{1}\right)\right|aX_{i}-bX_{i}\left(t\right)\right|\tag{5} Xi(t+1)=Xi(t)sinR1+R2sin(R1)aXibXi(t)(5)

3.结果展示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二维栅格路径规划

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 赵宏伟,董昌林,丁兵如,等.路径规划问题的多策略改进樽海鞘群算法研究[J].计算机科学,2024,51(S1):202-210.

5.代码获取

这篇关于【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122668

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map