【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究

2024-08-31 02:44

本文主要是介绍【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 1.算法原理
    • 2.改进点
    • 3.结果展示
    • 4.参考文献
    • 5.代码获取


1.算法原理

【智能算法】樽海鞘群算法(SSA)原理及实现

2.改进点

无标度网络策略

复杂网络在图论中可以用边和节点表示, Barabasi 等于1999年通过分析大量的数据提出了无标度网络模型. 该网络的度分布满足幂律分布, 这种网络结构已经在现实的世界中得到证明,如互联网、大脑神经系统网络和生物网络。产生无标度网络的经典模型便是 BA 模型,步骤分为:

在这里插入图片描述

首先构建出一个无标度网络结构来映射跟随者的关系, 接下来通过 BA 模型生成与跟随者数量相同的网络。跟随者可在网络中随机选择邻居ρ 进行位置更新:
x j i = 1 2 ( x j i + x j ρ ) , ρ ∈ N e i g h b o r ( i ) (1) x_{j}^{i}=\frac{1}{2}( x_{j}^{i}+x_{j}^{\rho} ) ,\rho\in\mathrm{Neighbor}(i)\tag{1} xji=21(xji+xjρ),ρNeighbor(i)(1)

自适应权重策略

为了对整个樽海鞘群进行动态调整, 考虑集成自适应权重策略。权重w:
ω = ( 1 − t T m a x ) e − c c = ∑ i = 1 N ∑ j = 1 dim ⁡ ( x j i − x ‾ j ) 2 × 1 N × D (2) \begin{aligned} &\left.\omega=\left(\begin{array}{c}1-\frac{t}{T_{\mathrm{~max}}}\end{array}\right.\right)\mathrm{e}^{-c} \\ &c=\sum_{i=1}^{N}\sqrt{\sum_{j=1}^{\dim}( x_{j}^{i}-\overline{x}^{j} )^{2}}\times\frac{1}{N\times D} \end{aligned}\tag{2} ω=(1T maxt)ecc=i=1Nj=1dim(xjixj)2 ×N×D1(2)

其中,搜索空间的最长对角线的距离为:
D = ∑ j = 1 dim ⁡ ( u b j − l b j ) 2 (3) D=\sqrt{\sum_{j=1}^{\dim}(ub_j-lb_j)^2}\tag{3} D=j=1dim(ubjlbj)2 (3)

考虑到优化整个樽海鞘群算法的性能, 将此处的自适应权重策略与无标度网络策略结合得出一个最终的追随者位置更新公式:
x j i = 1 2 ( ω × x j i + r 1 × x j ρ + r 2 × F j ) , ρ ∈ Neighbor ( i ) (4) x_j^i=\frac12(\omega\times x_j^i+r_1\times x_j^\rho+r_2\times F_j),\rho\in\text{Neighbor}(i)\tag{4} xji=21(ω×xji+r1×xjρ+r2×Fj),ρNeighbor(i)(4)

黄金正弦算子变异策略

黄金正弦算法对整个单位圆的搜索便类似于整个搜索空间内的寻优过程, 同时取黄金分割数以便搜索可以产生较好结果的区域并且缩小搜索的空间, 加快了算法的收敛速度. 黄金正弦算子:
X i ( t + 1 ) = X i ( t ) ∣ sin ⁡ R 1 ∣ + R 2 sin ⁡ ( R 1 ) ∣ a X i − b X i ( t ) ∣ (5) X_{i}\left(t+1\right)=X_{i}\left(t\right)\left|\sin R_{1}\left|+R_{2}\sin\left(R_{1}\right)\right|aX_{i}-bX_{i}\left(t\right)\right|\tag{5} Xi(t+1)=Xi(t)sinR1+R2sin(R1)aXibXi(t)(5)

3.结果展示

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二维栅格路径规划

在这里插入图片描述
在这里插入图片描述

4.参考文献

[1] 赵宏伟,董昌林,丁兵如,等.路径规划问题的多策略改进樽海鞘群算法研究[J].计算机科学,2024,51(S1):202-210.

5.代码获取

这篇关于【智能算法改进】路径规划问题的多策略改进樽海鞘群算法研究的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122668

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

利用Python把路径转为绝对路径的方法

《利用Python把路径转为绝对路径的方法》在Python中,如果你有一个相对路径并且想将其转换为绝对路径,你可以使用Path对象的resolve()方法,Path是Python标准库pathlib中... 目录1. os.path.abspath 是什么?怎么用?基本用法2. os.path.abspat

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图