石子归并---区间型动态规划

2024-08-31 01:48

本文主要是介绍石子归并---区间型动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述 Description

有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1]。问安排怎样的合并顺序,能够使得总合并代价达到最小。

输入描述 Input Description

第一行一个整数n(n<=100)

第二行n个整数w1,w2...wn  (wi <= 100)

输出描述 Output Description

一个整数表示最小合并代价

样例输入 Sample Input

4

4 1 1 4

样例输出 Sample Output

18

数据范围及提示 Data Size & Hint

本题的解法是在codevs上的题解中看到的,现在借鉴一下,感觉非常不错。

对于区间DP的问题,我们可以采用记忆化搜索的形式,也可以采取递推的形式。。但两者的实质是一样的。。

我们可以把石子的合并问题转化为对与区间的划分问题,从而建立数学模型。。石子合并问题也就转换成了区间划分代价最小的问题。。

注意点是在用记忆化搜索写的时候要进行适当的初始化,并且注意区间划分不要出现无穷递归的情形,选好划分点。

递推形式写的时候相当于枚举区间的长度,然后对区间的划分点进行枚举。。两种方法的实质相同。。希望两种方法都能学会并熟练掌握。

 

递推法:

#include<stdio.h>
#include<algorithm>
using namespace std;
int a[105];
int sum[105];
int d[105][105];
const int INF = (1 << 30);
int main(){int n, i;scanf("%d", &n);for (i = 1; i <= n; i++){scanf("%d", &a[i]);sum[i] = sum[i - 1] + a[i];}int len, j, k;for (len = 1; len < n; len++){for (i = 1; i <= n - len; i++){int res = INF;j = i + len;for (k = i; k < j; k++)res = min(res, d[i][k] + d[k + 1][j] + sum[j] - sum[i - 1]);d[i][j] = res;}}printf("%d\n", d[1][n]);return 0;
}


递推就是把所有可能出现的情况都枚举一遍,然后线性扫描,找到代价最小的。

 

下面是记忆化搜索, 相比递推比较容易理解

 

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[110];
int sum[110];
int dp[110][110];
const int INF = (1 << 30);
int solve(int l, int r)
{if (dp[l][r] != -1)return dp[l][r];int res = INF;for (int i = l; i <= r - 1; i++)res = min(res, solve(l, i) + solve(i + 1, r) + sum[r] - sum[l - 1]);return dp[l][r] = res;
}
int main()
{int n;scanf("%d", &n);for (int i = 1; i <= n; i++){scanf("%d", &a[i]);sum[i] = sum[i - 1] + a[i];}memset(dp, -1, sizeof(dp));for (int i = 1; i <= n; i++)    //注意要初始化为0dp[i][i] = 0;printf("%d\n", solve(1, n));return 0;
}

公众号「后知后jue」,微信搜索关注回复「1024」,你懂的!

这篇关于石子归并---区间型动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1122542

相关文章

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可