【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制

本文主要是介绍【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【通俗理解】自动调节动态平衡模型——生物体的稳态机制

关键词提炼

#自动调节 #动态平衡 #生物体稳态 #反馈机制 #体温调节 #微分方程模型

第一节:自动调节动态平衡模型的类比与核心概念

1.1 自动调节动态平衡模型的类比

自动调节动态平衡模型可以被视为生物体内部的“自动调温器”,它不断地监测和调整生物体的状态,使其保持在一个稳定的范围内。就像我们家里的空调,当室内温度升高时,空调会自动制冷;当室内温度降低时,空调会自动制热,从而保持室内的温度恒定。

在这里插入图片描述

1.2 相似公式比对

  • 简单反馈控制 u ( t ) = K ( r − x ( t ) ) u(t) = K(r - x(t)) u(t)=K(rx(t)),描述了一个简单的反馈控制过程,其中 u ( t ) u(t) u(t)是控制输入, K K K是反馈增益, r r r是目标状态, x ( t ) x(t) x(t)是当前状态。
  • 自动调节动态平衡模型 d x ( t ) d t = K ( r − x ( t ) ) \frac{dx(t)}{dt} = K(r - x(t)) dtdx(t)=K(rx(t)),则是一个微分方程,它描述了生物体状态 x ( t ) x(t) x(t)随时间 t t t的自动调节作用,更加贴近生物体的实际调节过程。

第二节:自动调节动态平衡模型的核心概念与应用

2.1 核心概念

核心概念定义比喻或解释
反馈机制系统通过监测当前状态与目标状态的差异,并作出相应调整的过程。就像空调的温度传感器,不断监测室内温度并调整制冷/制热。
目标状态 r r r系统希望维持的稳定状态。就像空调设定的温度。
当前状态 x ( t ) x(t) x(t)系统在时刻 t t t的实际状态。就像空调当前监测到的室内温度。
反馈增益 K K K系统对状态差异的敏感程度,决定了调整的力度。就像空调的温度调节灵敏度,决定了制冷/制热的快慢。

2.2 优势与劣势

  • 优势:能够解释生物体如何在面对外界干扰时,通过自动调节机制恢复平衡,为生物学研究提供了新的视角和方法。
  • 劣势:在某些病理状态或极端环境下,反馈机制可能失效,导致模型无法解释系统无法恢复平衡的情况。

2.3 与生物体稳态的类比

自动调节动态平衡模型在生物体稳态研究中扮演着“导航仪”的角色,它能够指引生物体在面对各种外界干扰时,如何调整自身状态以保持稳态,就像导航仪指引我们如何到达目的地一样。

第三节:公式探索与推演运算

3.1 自动调节动态平衡模型的基本形式

自动调节动态平衡模型的基本形式为:

d x ( t ) d t = K ( r − x ( t ) ) \frac{dx(t)}{dt} = K(r - x(t)) dtdx(t)=K(rx(t))

其中, x ( t ) x(t) x(t)代表当前的系统状态, r r r是目标状态, K K K是反馈增益系数。

3.2 具体实例与推演

以体温调节为例,当人体暴露在寒冷环境中时,会通过颤抖产生热量来维持体温。假设目标体温 r r r为37℃,当前体温 x ( t ) x(t) x(t)为36℃,反馈增益 K K K为0.5,那么根据自动调节动态平衡模型,体温的变化率 d x ( t ) d t \frac{dx(t)}{dt} dtdx(t)为:

d x ( t ) d t = 0.5 × ( 37 − 36 ) = 0.5 \frac{dx(t)}{dt} = 0.5 \times (37 - 36) = 0.5 dtdx(t)=0.5×(3736)=0.5

这意味着体温将以0.5℃/单位时间的速度上升,直到达到目标体温37℃。

第四节:相似公式比对

  • 简单线性模型自动调节动态平衡模型

    • 共同点:都描述了变量之间的关系。
    • 不同点:简单线性模型描述的是变量之间的静态关系,而自动调节动态平衡模型则描述了变量随时间的动态变化关系。
  • PID控制器自动调节动态平衡模型中的反馈机制

    • 相似点:PID控制器也是一种反馈控制系统,通过比例、积分、微分三种控制作用来调整系统状态。
    • 差异:PID控制器是工程控制中的经典模型,而自动调节动态平衡模型则更侧重于生物体的自我调节现象。

第五节:核心代码与可视化

这段代码使用scipy.integrate.solve_ivp函数求解了自动调节动态平衡模型,并绘制了系统状态随时间的变化曲线。

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.integrate import solve_ivp# Define the automatic regulation model
def auto_regulation(t, x):r = 37  # Target stateK = 0.5  # Feedback gaindxdt = K * (r - x)return dxdt# Initial condition
x0 = 36  # Initial state
t_span = (0, 10)  # Time span
t_eval = np.linspace(t_span[0], t_span[1], 100)  # Time points# Solve the differential equation
sol = solve_ivp(auto_regulation, t_span, [x0], t_eval=t_eval)# Visualize the results and beautify with Seaborn
sns.set_theme(style="whitegrid")
plt.plot(sol.t, sol.y[0], label='System State x(t)')
plt.xlabel('Time t')
plt.ylabel('System State x')
plt.title('Automatic Regulation of System State')
plt.legend()# Annotate important regions
plt.annotate('Initial State', xy=(0, x0), xytext=(0.5, 0.8), textcoords='axes fraction',bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))plt.annotate('Target State', xy=(np.argmax(np.isclose(sol.y[0], r, atol=0.1)), r), xytext=(0.6, 0.6), textcoords='axes fraction',bbox=dict(boxstyle='round,pad=0.5', fc='green', alpha=0.5),arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0'))plt.show()# Printing more detailed output information
print("System state change plot has been generated and displayed. \nThe plot illustrates the automatic regulation of system state x(t) over time t, \nmodeled using the Automatic Regulation Dynamic Balance Model. The x-axis represents time, \nand the y-axis represents the system state x.")

这段代码将展示系统状态如何随时间变化,并标注出初始状态和目标状态,帮助读者更直观地理解自动调节动态平衡模型的工作原理。

在这里插入图片描述

这篇关于【复杂系统系列(初级)】自动调节动态平衡模型——生物体的稳态机制的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1121968

相关文章

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Jvm sandbox mock机制的实践过程

《Jvmsandboxmock机制的实践过程》:本文主要介绍Jvmsandboxmock机制的实践过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、背景二、定义一个损坏的钟1、 Springboot工程中创建一个Clock类2、 添加一个Controller

Python使用pynput模拟实现键盘自动输入工具

《Python使用pynput模拟实现键盘自动输入工具》在日常办公和软件开发中,我们经常需要处理大量重复的文本输入工作,所以本文就来和大家介绍一款使用Python的PyQt5库结合pynput键盘控制... 目录概述:当自动化遇上可视化功能全景图核心功能矩阵技术栈深度效果展示使用教程四步操作指南核心代码解析

SpringBoot实现文件记录日志及日志文件自动归档和压缩

《SpringBoot实现文件记录日志及日志文件自动归档和压缩》Logback是Java日志框架,通过Logger收集日志并经Appender输出至控制台、文件等,SpringBoot配置logbac... 目录1、什么是Logback2、SpringBoot实现文件记录日志,日志文件自动归档和压缩2.1、

SpringCloud使用Nacos 配置中心实现配置自动刷新功能使用

《SpringCloud使用Nacos配置中心实现配置自动刷新功能使用》SpringCloud项目中使用Nacos作为配置中心可以方便开发及运维人员随时查看配置信息,及配置共享,并且Nacos支持配... 目录前言一、Nacos中集中配置方式?二、使用步骤1.使用$Value 注解2.使用@Configur

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中