#Datawhale X 李宏毅苹果书 AI夏令营#2.实践方法论

2024-08-30 16:36

本文主要是介绍#Datawhale X 李宏毅苹果书 AI夏令营#2.实践方法论,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2.实践方法论

概览:

  • 在应用机器学习算法时,实践方法论能够帮助我们更好地训练模型。
  • 如果在Kaggle上的结果不佳,首先应检查训练数据的损失,确认模型是否在训练集上表现良好。

2.1模型偏差

模型偏差可能会影响模型训练。

  • 定义:当模型过于简单,无法捕获数据中的复杂模式时,会发生模型偏差。
  • 示例:假设模型仅能表示一组有限的函数,可以让损失变低的函数不在模 型可以描述的范围内。
  • 解决方案:重新设计一个模型,给模型更大的灵活性。
    • 增加输入特征数量,使用更多的特征。
    • 使用深度学习(更多神经元、层)来提高模型的灵活性。

2.2优化问题

一般只会用到梯度下降进行优化,这种优化的方法很多的问题。

  • 定义:即使模型具有足够的灵活性,也可能因为优化方法(如梯度下降)的问题而未能找到最优解。
  • 示例:优化过程卡在局部最小值的地方。
  • 解决方案
    • 通过比较不同的模型来判断模型现在到底够不够大。比如残差网络的例子,56层的损失比20层高,因为56层网络的优化没有做好。
    • 可以先训练一些比较浅的模型,或者是一些比较简单的模型,先知道这些简单的模型,到底可以得到什么样的损失。
    • 如果深的模型跟浅的模型比起来,深的模型明明灵活性比较 大,但损失却没有办法比浅的模型压得更低代表说优化有问题,梯度下降不给力。
    • 如果更深的网络性能没有提升,则表明可能存在优化问题。

2.3过拟合

为什么会有过拟合这样的情况呢?过拟合如何解决呢?

  • 定义:模型在训练数据上表现极佳,但在未见过的数据(测试数据)上表现较差的现象。
  • 原因:模型过度适应训练数据,学习到了噪声而非潜在的规律。
  • 解决方案
    • 增加训练数据:收集更多的训练样本或使用数据增强技术。
    • 限制模型复杂度
      • 给模型比较少的参数。如果深度学习,给他比较少的神经元的数量;,或者让模型共用参数。
      • 用比较少的特征。
      • 应用正则化、早停或丢弃法等技术。

模型复杂度的平衡:可以选一个中庸的模型,不是太复杂的,也不是太简单的,刚刚好可以在训练集上损失最低,测试损失最低。

2.4交叉验证

比较合理选择模型的方法是把训练的数据分成两半,一部分称为训练集(training set), 一部分是验证集(validation set)。

  • 目的:交叉验证是一种评估模型泛化能力的方法,用于选择最佳模型。
  • 流程
    • 将数据集分为训练集和验证集,通常比例为90%和10%。
    • 使用训练集训练模型,并使用验证集评估模型性能。
    • 根据验证集上的性能挑选模型,然后将最终选定的模型应用于整个训练集进行训练。
  • k折交叉验证(k-fold cross validation)
    • 将训练集切成k等份。
    • 重复k次,每次将其中一个折用作验证集,其余k-1个折用作训练集。
    • 计算每个模型在所有k次验证上的平均性能,选择平均性能最佳的模型。
  • 优点
    • 减少了验证集随机划分的影响。
    • 更充分地利用了数据集中的样本。

2.5不匹配

  • 定义:不匹配是指训练集和测试集之间的数据分布差异。
  • 示例
    • 使用2020年的数据作为训练集,2021年的数据作为测试集,不匹配问题可能很严重。
    • 数据背后的基础分布发生了变化,导致模型预测效果不佳。
  • 案例分析
    • 模型预测2021年2月26日的观看人数,但实际结果与预测相差甚远。
    • 模型基于过去的数据预测周五晚上观看人数较低,但实际情况相反。
  • 解决方案
    • 需要理解数据本身的生成方式,识别分布变化的原因。
    • 收集更多数据通常不能解决不匹配问题。

喜欢的小伙伴点赞收藏关注吧。

这篇关于#Datawhale X 李宏毅苹果书 AI夏令营#2.实践方法论的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1121351

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

SpringBoot整合(ES)ElasticSearch7.8实践

《SpringBoot整合(ES)ElasticSearch7.8实践》本文详细介绍了SpringBoot整合ElasticSearch7.8的教程,涵盖依赖添加、客户端初始化、索引创建与获取、批量插... 目录SpringBoot整合ElasticSearch7.8添加依赖初始化创建SpringBoot项

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤