【第二部分 图像处理】第3章 Opencv图像处理进阶【6角点检测 C】

2024-08-30 13:32

本文主要是介绍【第二部分 图像处理】第3章 Opencv图像处理进阶【6角点检测 C】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

6.3亚像素角点检测

6.3.1 亚像素角点检测

前文讲解了利用Harris进行角点检测和利用Shi-Tomasi方法进行角点检测外,如果对角点的精度有更高的要求,可以用cornerSubPix()函数将角点定位到子像素,从而取得亚像素级别的角点检测效果。

6.3.2 亚像素角点检测:cornerSubPix()函数

 cornerSubPix()函数讲解

C++: void cornerSubPix( InputArray image, InputOutputArray corners, Size winSize, Size zeroZone,TermCriteria criteria)

【参数】
第一个参数,image – Input image.
第二个参数,corners – Initial coordinates of the input corners and refined coordinates provided for output.
第三个参数,winSize – Half of the side length of the search window. For example, if winSize=Size(5,5) , then a search window is used.
第四个参数,zeroZone – Half of the size of the dead region in the middle of the search zone over which the summation in the formula below is not done. It is used sometimes to avoid possible singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such a size.
第五个参数,criteria – Criteria for termination of the iterative process of corner refinement. That is, the process of corner position refinement stops either after criteria.maxCount iterations or when the corner position moves by less than criteria.epsilon on some iteration.
 cornerSubPix()函数源代码

/*【cornerSubPix ( )源代码】************************************************************ @Version:OpenCV 3.0.0(Opnencv2和Opnencv3差别不大,Linux和PC的对应版本源码完全一样,均在对应的安装目录下)  * @源码路径:…\opencv\sources\modules\imgproc\src\ cornersubpix.cpp* @起始行数:44行   
********************************************************************************/
void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,Size win, Size zeroZone, TermCriteria criteria )
{const int MAX_ITERS = 100;int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1;int i, j, k;int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;eps *= eps; // use square of error in comparsion operationscv::Mat src = _image.getMat(), cornersmat = _corners.getMat();int count = cornersmat.checkVector(2, CV_32F);CV_Assert( count >= 0 );Point2f* corners = cornersmat.ptr<Point2f>();if( count == 0 )return;CV_Assert( win.width > 0 && win.height > 0 );CV_Assert( src.cols >= win.width*2 + 5 && src.rows >= win.height*2 + 5 );CV_Assert( src.channels() == 1 );Mat maskm(win_h, win_w, CV_32F), subpix_buf(win_h+2, win_w+2, CV_32F);float* mask = maskm.ptr<float>();for( i = 0; i < win_h; i++ ){float y = (float)(i - win.height)/win.height;float vy = std::exp(-y*y);for( j = 0; j < win_w; j++ ){float x = (float)(j - win.width)/win.width;mask[i * win_w + j] = (float)(vy*std::exp(-x*x));}}// make zero_zoneif( zeroZone.width >= 0 && zeroZone.height >= 0 &&zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h ){for( i = win.height - zeroZone.height; i <= win.height + zeroZone.height; i++ ){for( j = win.width - zeroZone.width; j <= win.width + zeroZone.width; j++ ){mask[i * win_w + j] = 0;}}}// do optimization loop for all the pointsfor( int pt_i = 0; pt_i < count; pt_i++ ){Point2f cT = corners[pt_i], cI = cT;int iter = 0;double err = 0;do{Point2f cI2;double a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;getRectSubPix(src, Size(win_w+2, win_h+2), cI, subpix_buf, subpix_buf.type());const float* subpix = &subpix_buf.at<float>(1,1);// process gradientfor( i = 0, k = 0; i < win_h; i++, subpix += win_w + 2 ){double py = i - win.height;for( j = 0; j < win_w; j++, k++ ){double m = mask[k];double tgx = subpix[j+1] - subpix[j-1];double tgy = subpix[j+win_w+2] - subpix[j-win_w-2];double gxx = tgx * tgx * m;double gxy = tgx * tgy * m;double gyy = tgy * tgy * m;double px = j - win.width;a += gxx;b += gxy;c += gyy;bb1 += gxx * px + gxy * py;bb2 += gxy * px + gyy * py;}}double det=a*c-b*b;if( fabs( det ) <= DBL_EPSILON*DBL_EPSILON )break;// 2x2 matrix inversiondouble scale=1.0/det;cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y);cI = cI2;if( cI.x < 0 || cI.x >= src.cols || cI.y < 0 || cI.y >= src.rows )break;}while( ++iter < max_iters && err > eps );// if new point is too far from initial, it means poor convergence.// leave initial point as the resultif( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height )cI = cT;corners[pt_i] = cI;}
}

6.3.3亚像素角点检测实例

代码参看附件【demo1】。

这里写图片描述

图1

这里写图片描述

图2

参考:
英文链接
中文链接

本章参考附件

点击进入

这篇关于【第二部分 图像处理】第3章 Opencv图像处理进阶【6角点检测 C】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120955

相关文章

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

javaSE类和对象进阶用法举例详解

《javaSE类和对象进阶用法举例详解》JavaSE的面向对象编程是软件开发中的基石,它通过类和对象的概念,实现了代码的模块化、可复用性和灵活性,:本文主要介绍javaSE类和对象进阶用法的相关资... 目录前言一、封装1.访问限定符2.包2.1包的概念2.2导入包2.3自定义包2.4常见的包二、stati

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测