深度学习——LLM大模型分词

2024-08-30 11:52
文章标签 学习 深度 模型 llm 分词

本文主要是介绍深度学习——LLM大模型分词,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 前言

自从chatgpt出现,大模型的发展就进入了快车道,各种各样的大模型卷上天,作为一个在大模型时代的科研人,即使你不向前,也会被时代裹挟着向前,所以还是自己走快一点比较好,免得被后浪拍死在沙滩上。对于我而言,写文章更多的是对知识的总结和回顾,当然如果我的文章能够对你的学习有所帮助我也是挺开心的。

这篇文章主要参考B站上的这位大神的视频以及Huggingface上的总结
B站视频LLM分词
Huggingface Tokenizers

另外大家也可以通过这个分词网站来玩一下分词:https://tiktokenizer.vercel.app
这里放上一张思维导图,方便大家理解整篇文章的脉络。
在这里插入图片描述

2. Token,Tokenization和Tokenizer的概念

首先,什么是Token?什么是Tokenization? 什么又是Tokenizer
Token:是文本数据的基本单元也即词元,通常表示一个词、子词或字符.
Tokenization:Tokenization中文翻译为分词,是将原始文本字符串分割成一系列Token的过程。这个过程可以有不同的粒度,比如单词级别分词(Word-based Tokenizer)、字符级别分词(Character-based Tokenizer)和子词级别分词(Subword-based Tokenizer)。
Tokenizer: 是将文本切分成多个tokens的工具或算法
另外再NLP中我们经常会遇到一个词OOV(Out Of Vocabulary),意思是有些单词在词典中查询不到,例如一些根据词根现造的词,或者拼写错误的词等

接下来,我们首先介绍两种比较容易理解的分词Word-based TokenizerCharacter-based Tokenizer

3. Word-based Tokenizer

Word-based Tokenization 是将将文本划分为一个个词(包括标点)

我们以这句话为例:"Don't you love 🤗 Transformers? We sure do."

一种最简单的方法是通过空格进行划分:

["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."]

在这种划分下,标点和单词是粘在一起的: ["Transformers?","do."],,如果把标点也作为一个词的话,可以进一步划分:

["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."]

但是这里的Don't 应该被划分为Do,n't,引入规则之后事情就变得复杂起来了。

英文的划分有两个常用的基于规则的工具spaCyMoses,划分如下:

["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."]

使用Word-base Tokenizer,
优点是:符合人的自然语言和直觉。
缺点是: ①相同意思的词被划分为不同的token,比如:dog和dogs ② 最终的词表会非常大

在这里插入图片描述
因此我们可以设置词表上限比如上限为10000,未知的词用Unkown表示
在这里插入图片描述
但是这样会损失大量的信息,模型性能大打折扣!

4. Character-based Tokenizer

Character-based Tokenizer 将文本划分为一个个字符(包括标点)。
我们以这个例子为例: Today is Sunday.

按照Character 划分,我们可以得到

["T","o","d","a","y","i","s","S","u","n","d","a","y"]

使用Character-based Tokenizer 划分的优点是
① 大大减少了词汇量,在256个ASCII码表示的范围内
② 可以表示任意字符,不会出现unkown的情况
缺点是
①字母包含的信息量低,一个字母"T” 无法知道它具体指代的是什么,但如果是"Today"语义就比较明确
②相对于Word-based Tokenizer ,会产生很长的token序列
③如果是中文,依然会有很大的词汇量

5. Subword-based Tokenizer

在了解了Word-based Tokenizer和Character-based Tokenizer之后,我知道它们各有优缺点,接下来要介绍的Subword-based Tokenizer 则是这两种方法的折中。
在这里插入图片描述

Subword-based Tokenizer有BPE/BBPE,Unigram,WordPiece和SentencePiece,这些分词算法在下列模型中有应用
在这里插入图片描述

5.1 BPE/BBPE

5.1.1 BPE

BPE分词最早在 Neural Machine Translation of Rare Words with Subword Units (Sennrich et al.2015)中提出.BPE分为两部分“词频统计”“词表合并”。词频统计依赖于一个预分词器(pre-tokenization)将训练数据分成单词。预分词器可以非常简单,按照空格进行分词。例如GPT2,RoBERTa等就是这样实现的,更高级的预分词器引入了基于规则的分词,例如XLM,FlauBERT 使用Moses, GPT 使用spaCyftfy来统计语料中每个单词的词频。

在预分词之后,创建一个包含不同单词和对应词频的集合,接下来根据这个集合创建包含所有字符的词表,再根据合并规则两两合并形成一个新字符,将频率最高的新字符加入词表,直到达到预先设置的数量,停止合并。

仅仅讲概念可能会比较抽象,我们这里举个例子:

假设在预分词(一般采用Word-based Tokenization)之后,得到如下的包含词频的集合:

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

因此,基本词汇表是这样的:["b", "g", "h", "n", "p", "s", "u"] ,将所有单词按照词汇表里的字符切割得到如下形式:

("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5)

接下来统计相邻的两个字符组成的字符对的出现的频率:

在这里插入图片描述
ug出现了20次,出现次数最高,因此把ug加入词汇表,并将出现在一起的u,g用ug替换,然后在此统计词频un出现的频率最高,将un加入到词表,并将出现在一起的u,n用un替换。
在这里插入图片描述
接着进行第三次
在这里插入图片描述
假设基本词汇有478个,经过了40000次合并就有40478个,然后我利用这个词表进行分词,对于不在词表中的设置为特殊词<unk>
在这里插入图片描述

5.1.2 BBPE

重点介绍一下BBPE ,因为GPT2,GPT3,GPT4和LLaMA用的就是它,BBPE即 Byte-level BPE

5.2 Unigram

5.3 WordPiece

5.4 SentencePiece

BPE、WordPiece、Unigram 的缺点:
①假设输入文本使用空格来分隔单词,但并非所有语言都使用空格来分隔单词(如中文、韩文、日文、阿拉伯语)
②可以使用特定语言的pre-tokenizer 分词,但不太通用
为解决这个问题,SentencePiece将输入视为输入字节流,包括空格 然后搭配BBPE和Unigram来使用

参考文献

简介NLP中的Tokenization(基于Word,Subword 和 Character)
https://zhuanlan.zhihu.com/p/620603105
https://blog.csdn.net/zhaohongfei_358/article/details/123379481
LLM大语言模型之Tokenization分词方法

这篇关于深度学习——LLM大模型分词的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120743

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499