机器学习:TF-IDF算法原理及代码实现

2024-08-30 09:04

本文主要是介绍机器学习:TF-IDF算法原理及代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TF-IDF是一种用于信息检索与文本挖掘的常用加权技术。它是一种统计方法,用以评估一个词语对于一个文件集或一个语料库中的其中一份文件的重要程度。它的主要思想是:如果某个词语在一篇文章中出现的频率高(Term Frequency,TF),并且在其他文章中很少出现(Inverse Document Frequency,IDF),则认为这个词语具有很好的类别区分能力,对这篇文章的内容有很好的指示作用。

1. 词频(TF)

  • 定义:表示词条(关键字)在文档中出现的频率。
  • 计算公式
  • 目的:评估词条在文档中的重要性。

2. 逆文档频率(IDF)

  • 定义:表示词条的普遍重要性。
  • 计算公式
  • 目的:评估词条的稀有程度,降低常见词的权重。

3. TF-IDF

  • 定义:一个词条在一个文档中的重要性与它在语料库中的稀有程度的乘积。
  • 计算公式
  • 应用:通过计算文档中每个词条的TF-IDF值,可以评估词条对文档的区分能力。

4.优点:

  1. 简单性:TF-IDF算法易于理解和实现,不需要复杂的数学模型或机器学习技术。

  2. 有效性:在许多情况下,TF-IDF能够有效地捕捉文档中关键词的重要性,对于初步的文本分析和检索任务非常有效。

  3. 去噪能力:通过降低常见词的权重,TF-IDF减少了停用词和其他常见词对文本分析的影响。

  4. 无监督:TF-IDF不需要训练数据,可以应用于任何文本集合,无需事先标注。

  5. 多领域适用性:TF-IDF算法不依赖于特定领域的知识,因此可以应用于不同的领域和语料库。

  6. 可扩展性:TF-IDF可以应用于大规模文档集合,尽管计算和存储需求可能会随着文档数量的增加而增加。

5.缺点:

  1. 忽略词序:TF-IDF不考虑词条在文档中的位置或顺序,这可能会丢失一些语义信息。

  2. 对文档长度敏感:长文档可能会倾向于降低词条的权重,因为TF是基于词条出现次数的,而IDF与文档总数成反比。

  3. 无法捕捉同义词:TF-IDF无法识别意义相同或相近的不同词条,例如“汽车”和“轿车”可能被视为两个不同的词条。

  4. 无法处理多义词:TF-IDF不区分词条的不同含义,这可能导致在某些情况下权重分配不准确。

  5. 停用词处理:虽然TF-IDF降低了常见词的权重,但停用词的筛选需要预先进行,且不同的应用可能需要不同的停用词列表。

  6. 权重分配:TF-IDF的权重分配可能不是最优的,特别是在某些特定类型的文本分析任务中,可能需要更复杂的权重分配策略。

  7. 无法捕捉语义关系:TF-IDF不包含语义分析,无法捕捉词条之间的语义关系或上下文信息。

  8. 更新和维护成本:随着语料库的更新,TF-IDF模型需要重新计算,这可能在大规模数据集上是一个挑战。

6.代码实现

        1.数据预处理(task2_1.txt)

#打开文件task2_1.txt并读取所有行到列表cor。
import pandas as pd
infile=open(r"task2_1.txt","r")
cor=infile.readlines()

        2.导入TfidfVectorizer并初始化。

from sklearn.feature_extraction.text import TfidfVectorizer
tf=TfidfVectorizer()

        3.使用TfidfVectorizer将文本数据转换为TF-IDF矩阵。

tfidf=tf.fit_transform(cor)

        4.获取TF-IDF模型中的词汇表。

wordlist=tf.get_feature_names_out()

        5.创建一个DataFrame,其中词汇表作为索引,TF-IDF矩阵转置后的密集形式作为数据。

df=pd.DataFrame(tfidf.T.todense(),index=wordlist)

        6.遍历每篇文档,创建一个字典resdict来存储每篇文档中权重最高的词条。

for k in range(len(cor)):fea=df.iloc[:,k].to_list()resdict={}for i in range(0,len(wordlist)):if df.iloc[i,k]!= 0:  # 只考虑非零权重的词条resdict[wordlist[i]]=fea[i]# 按权重降序排序词条resdict=sorted(resdict.items(),key=lambda  x:x[1],reverse=True)print(resdict)

        7.完整代码

import pandas as pd
infile=open(r"task2_1.txt","r")
cor=infile.readlines()
# 初始化TfidfVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
tf=TfidfVectorizer()
# 转换文本数据为TF-IDF矩阵
tfidf=tf.fit_transform(cor)
# 获取词汇表
wordlist=tf.get_feature_names_out()
# 创建DataFrame,将词汇表作为行索引,原始文本数据作为列
df=pd.DataFrame(tfidf.T.todense(),index=wordlist)
for k in range(len(cor)):fea=df.iloc[:,k].to_list()resdict={}for i in range(0,len(wordlist)):if df.iloc[i,k]!= 0:resdict[wordlist[i]]=fea[i]resdict=sorted(resdict.items(),key=lambda  x:x[1],reverse=True)print(resdict)

这篇关于机器学习:TF-IDF算法原理及代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120378

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三