雾天道路目标检测数据集 8700张 雾天 带标注 voc yolo

2024-08-30 07:44

本文主要是介绍雾天道路目标检测数据集 8700张 雾天 带标注 voc yolo,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 df7fc2b0a0dc4b9bacc02ef15760a608.png

随着自动驾驶技术的发展,如何在恶劣天气条件下保证车辆的安全行驶成为了一个重要的研究课题。雾天环境下,能见度降低会严重影响目标检测系统的性能,因此开发针对雾天环境的目标检测算法变得尤为重要。本数据集旨在为研究人员提供一个高质量的、可用于训练和评估雾天道路目标检测模型的数据集。

数据集特点

  • 类型:雾天道路目标检测数据集。
  • 格式:VOC和YOLO格式,适用于训练目标检测模型。
  • 规模:共包含8700张图像。
  • 标注:使用.xml(VOC格式)和.txt(YOLO格式)文件进行标注,每个文件对应一张图像,标注格式分别为VOC和YOLO格式。
  • 类别:包含多种道路目标类别。
  • 质量:数据集标注准确,涵盖了多种雾天条件下的道路目标。

数据集组成

f0cd6950853d49b99f0f30d47098bfe1.png

  • 训练集:用于训练模型,包含约7000张图像。
  • 验证集:用于模型调参和验证,包含约870张图像。
  • 测试集:用于最终评估模型性能,包含约830张图像。

数据集目录结构

1foggy_road_dataset/
2├── images/
3│   ├── train/
4│   ├── val/
5│   └── test/
6├── annotations/
7│   ├── xmls/  # VOC format
8│   │   ├── train/
9│   │   ├── val/
10│   │   └── test/
11│   └── txts/  # YOLO format
12│       ├── train/
13│       ├── val/
14│       └── test/
15└── dataset.yaml  # YOLOv5 configuration file

标注格式

VOC格式

每个.xml文件包含图像的基本信息以及每个目标的标注,格式如下:

 

xml

1<annotation>
2    <folder>FoggyRoadDataset</folder>
3    <filename>000001.jpg</filename>
4    <size>
5        <width>1920</width>
6        <height>1080</height>
7        <depth>3</depth>
8    </size>
9    <object>
10        <name>car</name>
11        <pose>Unspecified</pose>
12        <truncated>0</truncated>
13        <difficult>0</difficult>
14        <bndbox>
15            <xmin>100</xmin>
16            <ymin>200</ymin>
17            <xmax>300</xmax>
18            <ymax>400</ymax>
19        </bndbox>
20    </object>
21    <!-- 更多目标 -->
22</annotation>

YOLO格式

每个.txt文件包含多个目标的标注,格式为:

 

深色版本

1<类别> <中心_x> <中心_y> <宽度> <高度>

其中,所有坐标值均为相对于图像尺寸的百分比。

示例标注文件

假设有一张图像中包含一辆汽车和一个行人,.txt文件内容可能如下所示:

10 0.3 0.4 0.2 0.2  # 汽车
21 0.7 0.6 0.1 0.15  # 行人

使用指南

  1. 环境搭建:确保安装了YOLOv5和其他必要的软件包。
  2. 数据集准备:下载数据集并按照上述目录结构组织数据。
  3. 模型配置:设置YOLOv5的训练参数,包括类别数量等。
  4. 模型训练:使用训练集对模型进行训练。
  5. 模型评估:使用验证集和测试集评估模型性能。

关键代码示例

1. 数据集准备

1import os
2import cv2
3import numpy as np
4
5def load_data(data_dir):
6    labels = sorted(os.listdir(data_dir))
7    data = []
8    for label in labels:
9        path = os.path.join(data_dir, label)
10        for img_name in os.listdir(path):
11            img_path = os.path.join(path, img_name)
12            img = cv2.imread(img_path, cv2.IMREAD_COLOR)
13            img = cv2.resize(img, (640, 640))  # YOLOv5 输入尺寸
14            data.append([img, labels.index(label)])
15    return np.array(data)
16
17data_dir = 'path/to/foggy_road_dataset'
18data = load_data(data_dir)

2. 模型训练

1# 安装YOLOv5
2pip install yolov5
3
4# 开始训练
5yolov5 train data=path/to/foggy_road_dataset/dataset.yaml cfg=yolov5s.yaml weights=pretrained_weights.pt epochs=100

报告和文档

  • 报告:报告应包括数据集背景、数据集组成、标注格式、使用指南等内容。
  • 文档:文档应包括数据集的组织方式、标注格式、模型训练及评估的具体步骤等。

注意事项

  • 确保数据集的质量,特别是标注的准确性。
  • 在训练过程中,注意监控模型的学习曲线,确保模型没有过拟合。
  • 调整合适的超参数以获得最佳性能。
  • 对于部署阶段,考虑到实时性的需求,可以适当简化模型结构或者使用量化技术。

这篇关于雾天道路目标检测数据集 8700张 雾天 带标注 voc yolo的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120204

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很