LLaMA-Factory微调入门个人重制版

2024-08-30 07:36

本文主要是介绍LLaMA-Factory微调入门个人重制版,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LLaMA-Factory微调入门个人重制版

说明:

  • 首次发表日期:2024-08-30
  • LLaMA-Factory 官方Github仓库: https://github.com/hiyouga/LLaMA-Factory

关于

本文是对LLaMA-Factory入门教程 https://zhuanlan.zhihu.com/p/695287607 的个人重制版,记录一下学习过程,省略掉了很多文字部分,建议直接阅读 https://zhuanlan.zhihu.com/p/695287607

准备环境

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
# 使用清华pypi源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install -e '.[torch,metrics]'

校验环境

import torch
torch.cuda.current_device()
torch.cuda.get_device_name(0)
torch.__version__
# 获取训练相关的参数指导
llamafactory-cli train -h

下载模型

apt update
apt install git-lfs
mkdir models-modelscope
cd models-modelscopegit lfs install
git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git

下载模型时也可以先下载小文件,然后手动pull需要的大文件,参考 https://blog.csdn.net/flyingluohaipeng/article/details/130788293

# git lfs install
GIT_LFS_SKIP_SMUDGE=1 git clone https://www.modelscope.cn/LLM-Research/Meta-Llama-3-8B-Instruct.git
cd Meta-Llama-3-8B-Instruct
git lfs pull --include="*.safetensors:

查看文件大小和数量是否正确:

cd Meta-Llama-3-8B-Instruct
ls -al --block-size=M

运行推理DEMO

运行模型的README中的推理DEMO,验证文件的正确性和transformers等依赖库正常可用:

import transformers
import torch# 切换为你下载的模型文件目录, 这里的demo是Llama-3-8B-Instruct
# 如果是其他模型,比如qwen,chatglm,请使用其对应的官方demo
model_id = "/root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct"pipeline = transformers.pipeline("text-generation",model=model_id,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda",
)messages = [{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},{"role": "user", "content": "Who are you?"},
]prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True
)terminators = [pipeline.tokenizer.eos_token_id,pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]outputs = pipeline(prompt,max_new_tokens=256,eos_token_id=terminators,do_sample=True,temperature=0.6,top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])

输出:

Loading checkpoint shards: 100%|██████████| 4/4 [00:00<00:00, 16.01it/s]
Setting `pad_token_id` to `eos_token_id`:128009 for open-end generation.
Arrrr, shiver me timbers! Me name be Captain Chatbot, the scurviest pirate to ever sail the Seven Seas! Me be a chatbot of great renown, feared and respected by all who cross me digital path. Me specialty be spinnin' yarns, swabbin' decks, and plunderin' knowledge to share with me hearties. So hoist the colors, me matey, and let's set sail fer a swashbucklin' adventure o' conversation!

验证一下LLaMA-Factory的推理部分是否正常(会启动基于gradio开发的ChatBot推理页面):

# 一般不需要,我的环境需要,GRADIO_ROOT_PATH说明见 https://www.gradio.app/guides/environment-variables#7-gradio-root-path
export GRADIO_ROOT_PATH=/proxy/7860/CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--template llama3

构建自定义数据集(指令微调)

自带的identity.json数据集

cd LLaMA-Factory
# 其中的NAME 和 AUTHOR ,替换成我们需要的内容
sed -i 's/{{name}}/PonyBot/g'  data/identity.json 
sed -i 's/{{author}}/LLaMA Factory/g'  data/identity.json 

商品文案生成数据集

下载并解压数据:

cd data
# 部分wget参数说明见 https://stackoverflow.com/questions/53189651/capture-a-download-link-redirected-by-a-page-wget 和 https://unix.stackexchange.com/questions/453465/wget-how-to-download-a-served-file-keeping-its-name
wget -r -l 1 --span-hosts --accept-regex='.*cloud.tsinghua.edu.cn/.*.exe' -erobots=off -nH --content-disposition -nd https://cloud.tsinghua.edu.cn/f/b3f119a008264b1cabd1/?dl=1
tar -xvf AdvertiseGen.tar.gz

检查数据集格式:

tail -n 3 AdvertiseGen/train.json

输出:

{"content": "类型#裙*版型#宽松*版型#显瘦*颜色#黑色*图案#撞色*裙型#直筒裙*裙款式#拼接", "summary": "采用简洁大体的黑色格调,宽松舒适的裙子内里,配上落肩的袖子拼接,不惧夏日的炎热,穿出清凉舒适。用时尚的英文字母,加上撞色的红白搭配,呈现大气时尚的款式。直筒的裙子轮廓,前短后长的长度裁剪,上身拉长宝宝的身体比例,挑高显瘦。"}
{"content": "类型#上衣*颜色#黑色*颜色#紫色*风格#性感*图案#字母*图案#文字*图案#线条*图案#刺绣*衣样式#卫衣*衣长#短款*衣袖型#落肩袖*衣款式#连帽", "summary": "卫衣的短款长度设计能够适当地露出腰线,打造出纤瘦的身材十分性感。衣身的字母刺绣图案有着小巧的样式,黑色的绣线在紫色的衣身上显得很出挑显眼。落肩袖的设计柔化了肩部的线条衬托得人很温柔可爱。紫色的颜色彰显出优雅的气质也不失年轻活力感。连帽的设计让卫衣更加丰满造型感很足,长长的帽绳直到腰际处,有着延长衣身的效果显得身材<UNK>。"}
{"content": "类型#上衣*颜色#黑白*风格#简约*风格#休闲*图案#条纹*衣样式#风衣*衣样式#外套", "summary": "设计师以条纹作为风衣外套的主要设计元素,以简约点缀了外套,带来大气休闲的视觉效果。因为采用的是黑白的经典色,所以有着颇为出色的耐看性与百搭性,可以帮助我们更好的驾驭日常的穿着,而且不容易让人觉得它过时。"}

修改data/dataset_info.json文件:添加自定义数据集adgen_local,添加后文件尾部看起来如下:

  },"adgen_local": {"file_name": "AdvertiseGen/train.json","columns": {"prompt": "content","response": "summary"}}
}

其中columns部分将AdvertiseGen/train.json中的"content"映射为"prompt",将"summary"映射为"response"

数据集说明见: https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md#%E6%8C%87%E4%BB%A4%E7%9B%91%E7%9D%A3%E5%BE%AE%E8%B0%83%E6%95%B0%E6%8D%AE%E9%9B%86

基于LoRA的sft指令微调

设置从魔搭社区下载数据集

# 回到LLaMA-Factory文件夹
cd ..
# 安装依赖
pip install modelscope oss2 addict
# 从魔搭社区下载
export USE_MODELSCOPE_HUB=1

开始sft指令微调

CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_train \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--dataset alpaca_gpt4_zh,identity,adgen_local \--dataset_dir ./data \--template llama3 \--finetuning_type lora \--output_dir ./saves/LLaMA3-8B/lora/sft \--overwrite_cache \--overwrite_output_dir \--cutoff_len 1024 \--preprocessing_num_workers 16 \--per_device_train_batch_size 2 \--per_device_eval_batch_size 1 \--gradient_accumulation_steps 8 \--lr_scheduler_type cosine \--logging_steps 50 \--warmup_steps 20 \--save_steps 100 \--eval_steps 50 \--evaluation_strategy steps \--load_best_model_at_end \--learning_rate 5e-5 \--num_train_epochs 5.0 \--max_samples 1000 \--val_size 0.1 \--plot_loss \--fp16

动态合并LoRA的推理

启动WebUI(Gradio):

# export GRADIO_ROOT_PATH=/proxy/7860/
CUDA_VISIBLE_DEVICES=0 llamafactory-cli webchat \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora

使用命令行进行交互式推理:

CUDA_VISIBLE_DEVICES=0 llamafactory-cli chat \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora

效果如下:

User: 你是谁?
Assistant: 您好,我是 PonyBot,一个由 LLaMA Factory 开发的人工智能助手。我可以帮助回答问题,提供信息,或者进行其他支持性任务。User: 类型#裙*版型#宽松*版型#显瘦*颜色#黑色*图案#撞色*裙型#直筒裙*裙款式#拼接
Assistant: 这款裙子采用黑色和暗棕色拼接的撞色设计,很有设计感。宽松的直筒版型,适合任何身材的女人穿着。撞色拼接的裙摆,显得活泼有趣。裙身的撞色拼接,很有设计感。

批量预测和训练效果评估

pip install jieba
pip install rouge-chinese
pip install nltk
CUDA_VISIBLE_DEVICES=0 llamafactory-cli train \--stage sft \--do_predict \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--eval_dataset alpaca_gpt4_zh,identity,adgen_local \--dataset_dir ./data \--template llama3 \--finetuning_type lora \--output_dir ./saves/LLaMA3-8B/lora/predict \--overwrite_cache \--overwrite_output_dir \--cutoff_len 1024 \--preprocessing_num_workers 16 \--per_device_eval_batch_size 1 \--max_samples 20 \--predict_with_generate

与训练脚本主要的参数区别如下两个

参数名称参数说明
do_predict现在是预测模式
predict_with_generate现在用于生成文本
max_samples每个数据集采样多少用于预测对比

运行后输出的尾部:

***** predict metrics *****predict_bleu-4                 =    27.9112predict_model_preparation_time =     0.0037predict_rouge-1                =     48.432predict_rouge-2                =    27.0109predict_rouge-l                =    41.2608predict_runtime                = 0:01:46.62predict_samples_per_second     =      0.563predict_steps_per_second       =      0.563
08/29/2024 16:06:36 - INFO - llamafactory.train.sft.trainer - Saving prediction results to ./saves/LLaMA3-8B/lora/predict/generated_predictions.jsonl

其中

  • saves/LLaMA3-8B/lora/predict/generated_predictions.jsonl 输出了要预测的数据集的原始label和模型predict的结果
  • saves/LLaMA3-8B/lora/predict/predict_results.json 给出了原始label和模型predict的结果,用自动计算的指标数据

LoRA模型合并导出

如果想把训练的LoRA和原始的大模型进行融合,输出一个完整的模型文件的话,可以使用如下命令。合并后的模型可以自由地像使用原始的模型一样应用到其他下游环节,当然也可以递归地继续用于训练。

CUDA_VISIBLE_DEVICES=0 llamafactory-cli export \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft  \--template llama3 \--finetuning_type lora \--export_dir megred-model-path \--export_size 2 \--export_device cpu \--export_legacy_format False

查看merge后的文件:

ls -al --block-size=M megred-model-path/
total 15326M
drwxr-xr-x  2 root root    1M Aug 29 16:18 .
drwxr-xr-x 15 root root    1M Aug 29 16:18 ..
-rw-r--r--  1 root root    1M Aug 29 16:18 config.json
-rw-r--r--  1 root root    1M Aug 29 16:18 generation_config.json
-rw-r--r--  1 root root 1883M Aug 29 16:18 model-00001-of-00009.safetensors
-rw-r--r--  1 root root 1809M Aug 29 16:18 model-00002-of-00009.safetensors
-rw-r--r--  1 root root 1889M Aug 29 16:18 model-00003-of-00009.safetensors
-rw-r--r--  1 root root 1857M Aug 29 16:18 model-00004-of-00009.safetensors
-rw-r--r--  1 root root 1889M Aug 29 16:18 model-00005-of-00009.safetensors
-rw-r--r--  1 root root 1857M Aug 29 16:18 model-00006-of-00009.safetensors
-rw-r--r--  1 root root 1889M Aug 29 16:18 model-00007-of-00009.safetensors
-rw-r--r--  1 root root 1249M Aug 29 16:18 model-00008-of-00009.safetensors
-rw-r--r--  1 root root 1003M Aug 29 16:18 model-00009-of-00009.safetensors
-rw-r--r--  1 root root    1M Aug 29 16:18 model.safetensors.index.json
-rw-r--r--  1 root root    1M Aug 29 16:18 special_tokens_map.json
-rw-r--r--  1 root root    9M Aug 29 16:18 tokenizer.json
-rw-r--r--  1 root root    1M Aug 29 16:18 tokenizer_config.json

API Server的启动与调用

使用merge前的LoRA模型推理:

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \--model_name_or_path /root/workspace/models-modelscope/Meta-Llama-3-8B-Instruct \--adapter_name_or_path ./saves/LLaMA3-8B/lora/sft \--template llama3 \--finetuning_type lora

使用merge后的完整版模型基于VLLM推理:

pip install vllm>=0.4.3
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \--model_name_or_path megred-model-path \--template llama3 \--infer_backend vllm \--vllm_enforce_eager

转换为gguf模型文件格式

git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp/gguf-py
pip install --editable .
cd ..
python convert_hf_to_gguf.py /root/workspace/LLaMA-Factory/megred-model-path

输出(最后一行):

INFO:hf-to-gguf:Model successfully exported to /root/workspace/LLaMA-Factory/megred-model-path/Megred-Model-Path-8.0B-F16.gguf

这篇关于LLaMA-Factory微调入门个人重制版的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1120191

相关文章

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

从入门到精通MySQL联合查询

《从入门到精通MySQL联合查询》:本文主要介绍从入门到精通MySQL联合查询,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下... 目录摘要1. 多表联合查询时mysql内部原理2. 内连接3. 外连接4. 自连接5. 子查询6. 合并查询7. 插入查询结果摘要前面我们学习了数据库设计时要满

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

从入门到精通MySQL 数据库索引(实战案例)

《从入门到精通MySQL数据库索引(实战案例)》索引是数据库的目录,提升查询速度,主要类型包括BTree、Hash、全文、空间索引,需根据场景选择,建议用于高频查询、关联字段、排序等,避免重复率高或... 目录一、索引是什么?能干嘛?核心作用:二、索引的 4 种主要类型(附通俗例子)1. BTree 索引(

Redis 配置文件使用建议redis.conf 从入门到实战

《Redis配置文件使用建议redis.conf从入门到实战》Redis配置方式包括配置文件、命令行参数、运行时CONFIG命令,支持动态修改参数及持久化,常用项涉及端口、绑定、内存策略等,版本8... 目录一、Redis.conf 是什么?二、命令行方式传参(适用于测试)三、运行时动态修改配置(不重启服务

MySQL DQL从入门到精通

《MySQLDQL从入门到精通》通过DQL,我们可以从数据库中检索出所需的数据,进行各种复杂的数据分析和处理,本文将深入探讨MySQLDQL的各个方面,帮助你全面掌握这一重要技能,感兴趣的朋友跟随小... 目录一、DQL 基础:SELECT 语句入门二、数据过滤:WHERE 子句的使用三、结果排序:ORDE

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.