基于大数据的电商平台电脑销售数据分析系统

2024-08-29 23:28

本文主要是介绍基于大数据的电商平台电脑销售数据分析系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B站视频及代码下载:基于大数据的电商平台电脑销售数据分析系统_哔哩哔哩_bilibili

1. 项目简介

        随着电子商务的蓬勃发展,各大电商平台积累了海量的商品数据。如何从这些数据中提取有价值的信息,对于商家来说至关重要。本项目利用网络爬虫技术从京东电商平台采集各类品牌笔记本电脑的价格、销量、评论等数据,经过数据清洗后存入数据库,并实现电脑销售、市场占有率、价格区间等多维度的可视化统计分析,并基于多属性的特产的个性化推荐。 系统采用 Flask 框架构建后端分析服务,前端采用 Bootstrap + Echarts 实现可视化渲染,帮助商家更好地理解市场需求,从而制定有效的营销策略。

基于大数据的电商平台电脑销售数据分析系统

2. 电脑销售数据采集

        利用Python的 request + beautifulsoup 等工具,采集某东电商的主流品牌笔记本商品的销售数据,并针对采集的原始数据进行数据清洗,存储到关系数据库中:

# ......brand_page_href = brand_href + '&page={}&s={}&click=0'.format(page, size)
resp = requests.get(brand_page_href, headers=headers)
soup = BeautifulSoup(resp.text, 'lxml')
items = soup.find_all('li', attrs={'class': 'gl-item'})all_phones = []
for item in items:# try:# 图片img = 'https:' + item.img['data-lazy-img']# 价格price = item.find('div', attrs={'class': 'p-price'}).text.strip()if '\n' in price:price = float(price.split('\n')[0].strip()[1:])else:price = float(price.strip()[1:])# 产品名称name = item.find('div', attrs={'class': 'p-name p-name-type-2'})name = name.a['title'].strip()# 产品的详细链接atag = item.find('a')phone_href = 'https:' + atag['href']product_id = phone_href.split('/')[-1].split('.')[0]  # 提取商品ID# 抓取该产品的详细信息,此处为销量c = requests.get('https://XXXX.XX.com/comment/productCommentSummaries.action?referenceIds=' + product_id,headers=headers, proxies=random.choice(proxy_list))  # 请求评论jsoncomment_dict = json.loads(c.text.split('[')[-1].split(']')[0])  # json内容截取# ......

3. 电商平台电脑销售数据分析系统 

本系统主要由以下几个部分组成:

  • 数据采集: 利用网络爬虫技术从某东电商平台采集笔记本电脑的价格、销量、评论等数据。
  • 数据预处理: 清洗和整理采集到的数据,确保数据的质量。
  • 数据存储: 将处理后的数据存储到数据库中,便于后续的查询和分析。
  • 数据分析与可视化: 对存储的数据进行多维度的分析,包括占有率与均价分析、电脑评论分析、电脑销售额分析、销售宣传词云分析等,并通过图表的形式将分析结果呈现出来。
  • 个性化推荐: 根据用户的偏好和历史行为,推荐相关的电脑产品。

3.1 系统首页

3.2 品牌占有率与均价分析

        通过统计每个品牌下面所有电脑商品的销量数据,并进行归一化,计算市场占有率:

......pingpai_counts = {}
for data in datas:pingpai = data[0]count = json.loads(data[1])count = count['CommentCountStr']if '+' in count:count = count[:-1]if '万' in count:count = int(count[:-1]) * 10000else:count = int(count)else:count = int(count)if pingpai not in pingpai_counts:pingpai_counts[pingpai] = 0pingpai_counts[pingpai] += counttotal = sum(pingpai_counts.values())pingpai_counts = sorted(pingpai_counts.items(), key=lambda x: x[1], reverse=True)
pingpai = [p[0] for p in pingpai_counts]
counts = [p[1] for p in pingpai_counts]
zhanyoulv = [p[1] / total * 1.0 for p in pingpai_counts]
......

综合以上分析,我们可以得出以下结论:

  1. 联想电脑在京东电商平台具有显著的竞争优势,其销量远高于其他品牌,表明消费者对联想品牌的认可度高,市场需求较大。
  2. 惠普和华为虽然销量不如联想,但在市场上仍有一定的份额,说明这两个品牌也有一定的竞争力。
  3. 机械师、微软和神舟的销量较低,可能是由于品牌知名度、产品质量、价格等因素导致的。这三个品牌需要进一步加强市场推广和产品差异化,以提高市场份额。
  4. 苹果电脑的价格最高,主要面向高端市场;华为和小米的价格也较高,但略低于苹果,说明这两个品牌的产品定位偏向中高端市场;七彩虹和宏碁的价格最低,可能定位于中低端市场,适合预算有限的消费者。

3.3 电脑好评率与差评率分析

......
pingpai_counts = {}
for data in datas:pingpai = data[0]if pingpai not in hot_pingpai:continuecomment = json.loads(data[1])# 平均评分PoorRate = comment['PoorRate']# 好评率GoodRate = comment['GoodRate']# 评论数量CommentCount = comment['CommentCountStr']CommentCount = CommentCount.replace('+', '')if '万' in CommentCount:CommentCount = 10000 * int(CommentCount[:-1])CommentCount = int(CommentCount)if pingpai not in pingpai_counts:pingpai_counts[pingpai] = []pingpai_counts[pingpai].append([PoorRate, GoodRate, CommentCount])
......

综合以上分析,我们可以得出以下结论:

  1. H&U&R&W、THINKBOOK和戴尔在京东电商平台具有较好的口碑,但同时也存在一些问题,需要关注消费者的反馈并及时改善产品和服务。
  2. H&U&R&W、THINKBOOK和戴尔的平均好评率排名靠前,而联想、华为、海尔的平均差评率排名靠前。

3.4 电脑销售额分析

        这张图表显示了京东电商平台上不同品牌电脑的总销售额分布情况。从左图可以看到,联想的销售额最高,其次是苹果和惠普,而机械革命(MECHREVO)和七彩虹(Colorful)的销售额最低。右图则展示了各个品牌电脑的销售额漏斗图,联想的销售额占比最大,其次是苹果和惠普。我们可以得出以下结论:

  1. 联想电脑在京东电商平台具有显著的销售额优势,其销售额远高于其他品牌,表明消费者对其产品的接受程度较高。
  2. 苹果和惠普虽然销售额不及联想,但在市场上仍有一定份额,说明这两个品牌也有一定的竞争力。
  3. 机械革命(MECHREVO)和七彩虹(Colorful)的销售额较低,可能需要通过优化产品设计、提高服务质量等方式来吸引更多的消费者。

3.5 电脑产品宣传标关键词分析

3.6 品牌电脑推荐

        根据电脑品牌、最低价格、最高价格和最低评分等参数,系统能够向用户自动推荐符合其需求和预算的品牌电脑。这种品牌电脑推荐服务不仅可以提高消费者的购物体验,还有助于增加京东商家的销售额和客户满意度。

4. 总结

        本项目利用网络爬虫技术从京东电商平台采集各类品牌笔记本电脑的价格、销量、评论等数据,经过数据清洗后存入数据库,并实现电脑销售、市场占有率、价格区间等多维度的可视化统计分析,并基于多属性的特产的个性化推荐。 系统采用 Flask 框架构建后端分析服务,前端采用 Bootstrap + Echarts 实现可视化渲染,帮助商家更好地理解市场需求,从而制定有效的营销策略。

 B站视频及代码下载:基于大数据的电商平台电脑销售数据分析系统_哔哩哔哩_bilibili

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的师姐 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

这篇关于基于大数据的电商平台电脑销售数据分析系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119146

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I