结合ollama gemma2:2b大模型来实现数据分析系统的智能交互

本文主要是介绍结合ollama gemma2:2b大模型来实现数据分析系统的智能交互,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在最近的人员风险行为分析系统开发过程中,需要解决一个问题:在缺乏GPU资源的情况下,如何提升智能交互能力。​我们探索并研究了集成gemma2:2b模型的可行性,这一举措旨在在有限的硬件条件下,为我们的系统注入更高级别的智能性,从而增强用户体验并提高数据分析效率。
具体可分为如下几个步骤:

  1. 定义用户可能提出的问题类型
  2. 结合大模型设计接口,以便根据用户的问题提取实体信息
  3. 实现数据检索机制以提取相关信息返回给用户

如下,是系统页面原型,
在这里插入图片描述
交互时,用户输入自己的问题,我们无法预测用户输入什么,但是我们可以定义系统能处理什么类型的问题。在本功能里,我们定义如下系统可以交互的问题分类:

  1. 人员的基本信息
  2. 联网设备(应用系统、数据库资产、终端设备资产、服务器资产等)的基本信息
  3. 人员日常操作风险(从告警列表里读取)
  4. 和知识图谱的交互线索,例如共用终端风险线索(从知识图谱里查到用户使用两个以上终端设备的图数据)

接着我们要用大模型把用户问题里的实体抽取出来,这就需要我们定义prompt,并利用提示词让大模型帮我们把用户的问题解读成我们可继续执行的实体行为。代码如下:

@app.route('/chat', methods=['POST'])
def chat():data = request.jsonprompt = data.get('prompt', '')payload = {"model": "gemma2:2b","prompt": BASE_PROMPT + prompt}response = requests.post(f"{OLLAMA_API_BASE}/generate", json=payload)response.headers['Content-Type'] = 'application/json; charset=utf-8'if response.status_code == 200:try:result = response.content.decode('utf-8')# 尝试解析每一行responses = [json.loads(line) for line in result.strip().split('\n')]# 提取所有响应中的 'response' 字段combined_response = ''.join(r.get('response', '') for r in responses if 'response' in r)# 使用正则表达式提取括号内的内容pattern = r'\((.*?)\)'matches = re.findall(pattern, combined_response)result_list = []for match in matches:# 使用defaultdict来处理重复键result_dict = defaultdict(list)# 使用逗号分割键值对,允许逗号前后有空格pairs = re.split(r'\s*,\s*', match)# 遍历每个键值对for pair in pairs:# 使用冒号分割键和值,允许冒号前后有空格key_value = re.split(r'\s*:\s*', pair, maxsplit=1)if len(key_value) == 2:key, value = key_value# 去除键和值两端的空格,并将值添加到对应的键的列表中result_dict[key.strip()].append(value.strip())# 将defaultdict转换为普通字典,对于只有一个值的键,直接使用该值而不是列表final_dict = {k: v[0] if len(v) == 1 else v for k, v in result_dict.items()}result_list.append(final_dict)return jsonify({"response": result_list})except json.JSONDecodeError as e:return jsonify({"error": f"Failed to parse JSON response: {str(e)}"}), 500else:return jsonify({"error": "Failed to get response from Ollama"}), 500

代码里的关键部分是BASE_PROMPT,我找了GPT帮我润色,如下,感觉可以写的更好一些。

BASE_PROMPT = """您的任务是仔细分析用户提供的文本,并从中提取关键实体信息。请特别关注以下四类实体:1. 用户相关信息:- 姓名- 身份证号码- 所在公司- 其他相关的个人识别信息2. 设备相关信息:- IP地址- MAC地址- 操作系统- 机器名称- 其他可识别的设备特征3. 事件相关信息:- 网络事件- 风险事件- 其他值得注意的事件4. 时间相关信息:- 时间段- 开始时间- 结束时间- 其他时间请仔细阅读文本,识别并提取上述实体信息。将提取的信息以(key:value)的格式整理,多个实体之间用逗号分隔。key只能从IP、姓名、身份证、电话号码、操作系统、事件、时间这几个词里选择。例如:(姓名: 张三, 身份证: 310123199001011234, IP: 192.168.1.100, 操作系统: Windows 10, 事件: 异常登录, 时间: 前天)如果某类实体在文本中未提及,则无需包含在结果中。请确保提取的信息准确且与原文相符。如果文本中包含其他重要的实体信息,也请一并提取。请现在开始分析下面用户提供的文本,并按上述格式返回提取的实体信息:"""

可以看看测试结果如下,
在这里插入图片描述
这样我们就可以根据response进行进一步的拆解,按姓名、按事件、按时间来整理数据并最终返回给用户。

这篇关于结合ollama gemma2:2b大模型来实现数据分析系统的智能交互的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1119119

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依