在自己的数据集上测试coco评价指标——以Mar20为例

2024-08-29 21:20

本文主要是介绍在自己的数据集上测试coco评价指标——以Mar20为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考:
1.在自己的数据集上调用cocoapi计算map
2. COCO Result Format
3.COCO result json
之前的模型都是在COCO数据集上训练,数据集的标注以及结果的生成格式都是按照官方的格式组织的,调用cocoapi和官方下载的instance_val2017.json计算就可以了。
现在需要在其他数据集上测试map等指标,这些图片都是标注好的,但是格式和coco要求不一样,因此需要进行转换。
分为四个步骤:1. 数据集划分和标签转换;2.将标注转为coco的result格式;3. 将模型推理结果保存为result格式;4.调用cocoapi计算;

我要测试的数据集为Mar20,数据的标注格式为未归一化的(xmin, xmax, ymin, ymax),COCO的标注格式为未归一化的(xmin, ymin, width, height)。数据集的组织形式如下:
在这里插入图片描述
注意:这里测试的MAR20数据集类别为20种飞机类,测试过程中我将这20类全部映射为了COCO的飞机类别。如果需要测试其他数据集,在标签转换过程中需要注意cls_id这个属性。

[‘A1’,‘A2’,‘A3’,‘A4’,‘A5’,‘A6’,‘A7’,‘A8’,‘A9’,‘A10’,‘A11’,‘A12’,‘A13’,‘A14’,‘A15’,‘A16’,‘A17’,‘A18’,‘A19’,‘A20’]

一、数据集划分和标签转换

1.xml标签转为txt

首先将xml标签转化为txt。注意不同的数据集修改数据集类别,convert函数,convert_annotation函数里的cls_id,以及数据的路径。转换后的标签保存在MAR20/coco_Labels目录下。

import xml.etree.ElementTree as ET
import os
import cv2
import random
random.seed(0)# 数据集类别
classes = ['A1','A2','A3','A4','A5','A6','A7','A8','A9','A10','A11','A12','A13','A14','A15','A16','A17','A18','A19','A20' ]def convert(box):# 修改 box : xmin, xmax, ymin, ymax -- xmin, ymin, w, hy= box[2]x= box[0]w = box[1] - box[0]h = box[3] - box[2]return (int(x), int(y), int(w), int(h))#  修改 数据集地址
dataset_path = './datasets/MAR20'def convert_annotation(image_id):in_file = open(os.path.join(dataset_path, f'Annotations/Horizontal Bounding Boxes/{image_id}.xml'))  # 修改 xml所在路径img_file = cv2.imread(os.path.join(dataset_path, f'JPEGImages/{image_id}.jpg'))  # 修改 图片所在路径out_file = open(os.path.join(dataset_path, f'coco_Labels/{image_id}.txt' ),'w+')  # 修改 转换后的txt保存路径tree = ET.parse(in_file)root = tree.getroot()assert img_file is not Nonesize = img_file.shape[0:-1]h = int(size[0])w = int(size[1])for obj in root.iter('object'):cls = obj.find('name').textif cls not in classes :continue# cls_id = classes.index(cls)cls_id = 4  # 修改 Mar20是飞机目标识别,细分为10类,这里将飞机目标统一为COCO的飞机目标类别,即4xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))ZIP_ONE = convert(b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in ZIP_ONE]) + '\n')wd = getcwd()coco_Labels_out = os.path.join(dataset_path, 'coco_Labels')  # 修改 保存图片绝对路径的txt文件的路径if not os.path.exists(coco_Labels_out):os.makedirs(coco_Labels_out)images = os.listdir(os.path.join(dataset_path, 'JPEGImages'))  # 修改 图片所在文件夹
files = [file for file in images if file.endswith('.jpg')]
image_ids = [file.split('.')[0] for file in files]for image_id in image_ids:try:print(image_id)        convert_annotation(image_id)except:print('error img:', image_id)

运行以上代码后会在coco_Labels文件夹下生成以下文本:
在这里插入图片描述

2.划分数据集

然后划分数据集的图片和标签,注意修改划分的比例,输入和输出的地址。划分后的数据保存在MAR20/split目录下。

import os
import random
from shutil import copyfile
random.seed(0)def split_dataset(input_images_dir, input_labels_dir, output_dir, split_ratio=(0.7, 0.05, 0.25)):# 创建输出目录结构os.makedirs(output_dir, exist_ok=True)os.makedirs(os.path.join(output_dir, 'images', 'train'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'images', 'val'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'images', 'test'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'labels', 'train'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'labels', 'val'), exist_ok=True)os.makedirs(os.path.join(output_dir, 'labels', 'test'), exist_ok=True)# 获取所有图片文件image_files = [f for f in os.listdir(input_images_dir) if f.endswith('.jpg')]num_images = len(image_files)# 随机打乱图片顺序random.shuffle(image_files)# 计算划分的数量num_train = int(num_images * split_ratio[0])num_val = int(num_images * split_ratio[1])num_test = num_images - num_train - num_val# 分割图片和标签文件for i, image_file in enumerate(image_files):if i < num_train:set_name = 'train'elif i < num_train + num_val:set_name = 'val'else:set_name = 'test'# 复制图片文件copyfile(os.path.join(input_images_dir, image_file), os.path.join(output_dir, 'images', set_name, image_file))# 构建对应的标签文件名label_file = os.path.splitext(image_file)[0] + '.txt'# 复制标签文件copyfile(os.path.join(input_labels_dir, label_file), os.path.join(output_dir, 'labels', set_name, label_file))# 修改 数据集地址
dataset_path = './datasets/MAR20'# 修改输出地址
output_dir = os.path.join(dataset_path, 'split')
os.makedirs(output_dir, exist_ok=True)# 修改输入图片和标签地址
input_images_dir = os.path.join(dataset_path, 'JPEGImages')
input_labels_dir = os.path.join(dataset_path,'coco_Labels')split_ratio=(0.7, 0.05, 0.25)
# 调用划分函数 划分比例为70%训练集,5%验证集,25%测试集
split_dataset(input_images_dir, input_labels_dir, output_dir, split_ratio)

划分好后,在MAR20/split文件夹下生成以下文件:
在这里插入图片描述

二、将标注转为coco的result格式

首先将test数据集的图片路径保存到test.txt文件中:

import xml.etree.ElementTree as ET
import os# test图片路径
test_path = './datasets/MAR20/split/images/test'
# 保存txt路径
saved_txt_path = './datasets/MAR20/test.txt'for img in os.listdir(test_path):img_path = os.path.join(test_path, img)with open(saved_txt_path, 'a') as f:f.write(img_path + '\n')

MAR20/test.txt文件内容如下:
在这里插入图片描述
然后将MAR20/labels/test文件夹下的标注转换为coco格式,输出为annotations.json:

import json
import cv2
import osif __name__=='__main__':cats = list()# 输出的json文件路径out_path = 'annotations.json'# test.txt路径test_path = './datasets/MAR20/test.txt'with open('obj.names', 'r') as f:for line in f.readlines():line = line.strip('\n')cats.append(line)cat_info = []for i, cat in enumerate(cats):cat_info.append({'name': cat, 'id': i})ret = {'images': [], 'annotations': [], "categories": cat_info}i = 0for line in open(test_path, 'r'):line = line.strip('\n')i += 1image_id = eval(os.path.basename(line).split('.')[0])image_info = {'file_name': '{}'.format(line), 'id': image_id}ret['images'].append(image_info)anno_path = line.replace('.jpg', '.txt')anno_path = anno_path.replace('images', 'labels')anns = open(anno_path, 'r')img = cv2.imread(line)height, width = img.shape[0], img.shape[1]for ann_id, txt in enumerate(anns):tmp = txt[:-1].split(' ')cat_id = tmp[0]bbox = [float(x) for x in tmp[1:]]  # 注意box格式,已经提前转换成coco格式了area = round(bbox[2] * bbox[3], 2)# coco annotation formatann = {'image_id': image_id,'id': int(len(ret['annotations']) + 1),'category_id': int(cat_id),'bbox': bbox,'iscrowd': 0,'area': area}ret['annotations'].append(ann)json.dump(ret, open(out_path, 'w'))

以上转换需要用到的coco标签和id对应关系如下,文件名为obj.names,复制以下内容保存到obj.names中:

0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush

三、将推理结果转换为coco格式

推理的时候将单帧结果保存在items,所有的推理结果保存在result,然后将result保存到results.txt文件中。
保存的格式可以参考https://cocodataset.org/#format-results 和 https://github.com/cocodataset/cocoapi/tree/master/results

然后手动将results.txt后缀改为.json即可(保存为json总是报错,麻了)。

#  items为每一帧的检测结果for i in range(len(classes)):items.append({"image_id": eval(image_name),"category_id":classes[i],"bbox":boxes[i].tolist(), "score":1.0})# 检测结果为空也要保存,否则会导致后续的评估出错if len(items)==0:items.append({"image_id": eval(image_name),"category_id":0,"bbox":[0,0,0,0], "score":0})# 以上代码保存了单帧检测结果,result保存了所有的结果
result = []
# ...
result.extend(items)json_file_path = 'results.txt'
# 字典键值会自动变为单引号,json格式必须为双引号,所以需要用json.dumps()函数转换字符
json_str = json.dumps(result, ensure_ascii=False, default=default_dump) 
with open(json_file_path, 'w') as file:file.write(str(json_str))

四、调用cocoapi计算coco指标

直接调用接口即可计算coco指标:

from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOevaldef main():results_file ='result.json'annotations = 'annotations.json'cocoGt = COCO(annotations)cocoDt = cocoGt.loadRes(results_file)cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')cocoEval.params.catIds = [4] # 你可以根据需要增减类别cocoEval.evaluate()cocoEval.accumulate()cocoEval.summarize()if __name__ == '__main__':main()

五、YOLO系列调用cocoapi

根据前面一、二步骤划分好数据集,转换好annotations.json,可以直接运行以下.py文件获得coco指标:

import os
import jsonfrom pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
from ultralytics import YOLOdef generate_results(yolo, imgs_dir, jpgs, results_file):"""Run detection on each jpg and write results to file."""results = []for jpg in jpgs:img_path = os.path.join(imgs_dir, jpg)image_id = int(jpg.split('.')[0])det = yolo.predict(img_path, conf=0.25,save=True)boxes = det[0].boxesfor i in range(len(boxes)):box = boxes[i]# 注意ultralytics中的xywh坐标中xy是中心点坐标,coco中的xy是左上角坐标x_c, y_c, w, h = box.xywh.tolist()[0]   x_min = x_c - w / 2y_min = y_c - h / 2conf = box.conf.tolist()[0]cls = int(box.cls.tolist()[0])results.append({'image_id': image_id,'category_id': cls,'bbox': [x_min, y_min, w, h],'score': float(conf)})with open(results_file, 'w') as f:f.write(json.dumps(results, indent=4))def main():results_file ='result.json'  # yolo推理结果保存文件imgs_dir = './datasets/MAR20/split/images/test'  # 测试集图片路径annotations = 'annotations.json'  # gt标注文件model=YOLO('yolov8l.yaml').load("/home/jingjia/sdb/liaocheng/ultralytics-main/yolov8l.pt")jpgs = [j for j in os.listdir(imgs_dir) if j.endswith('.jpg')]generate_results(model, imgs_dir, jpgs, results_file)# Run COCO mAP evaluation# Reference: https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynbcocoGt = COCO(annotations)cocoDt = cocoGt.loadRes(results_file)cocoEval = COCOeval(cocoGt, cocoDt, 'bbox')cocoEval.params.catIds = [4] # 你可以根据需要增减类别cocoEval.evaluate()cocoEval.accumulate()cocoEval.summarize()if __name__ == '__main__':main()

运行结果:
在这里插入图片描述

这篇关于在自己的数据集上测试coco评价指标——以Mar20为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118921

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆