智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(XGBoost分类器)

本文主要是介绍智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(XGBoost分类器),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(XGBoost分类器)

文章目录

  • 一、基本原理
      • 鲸鱼智能优化特征选择流程
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(XGBoost分类器)

一、基本原理

当然,这里是鲸鱼智能优化算法(WOA)与XGBoost分类器结合进行特征选择的完整流程:

鲸鱼智能优化特征选择流程

  1. 数据准备:

    • 收集数据: 获取需要进行特征选择的数据集。
    • 数据清洗: 处理数据中的缺失值、异常值等,确保数据质量。
  2. 特征编码:

    • 二进制编码: 为每个特征分配一个二进制编码,其中1表示选中该特征,0表示不选中。
  3. 初始鲸鱼种群生成:

    • 初始化种群: 创建一组随机的鲸鱼个体,每个个体表示一个特征子集。每个鲸鱼个体的特征子集通过二进制编码表示。
  4. 适应度评估:

    • 训练XGBoost模型: 对每个鲸鱼个体表示的特征子集训练XGBoost分类器。
    • 计算适应度值: 通过分类器的性能指标(如准确率、F1分数等)来评估每个特征子集的适应度。
  5. 鲸鱼智能优化算法迭代:

    • 猎物包围: 根据当前最优解更新每个鲸鱼的位置,模拟鲸鱼包围猎物的行为。
    • 气泡网攻击: 根据鲸鱼的气泡网捕猎行为更新鲸鱼的位置,从而选择特征。
    • 猎物螺旋更新: 更新鲸鱼位置,模拟鲸鱼围绕猎物螺旋上升的行为,探索更好的特征子集。
    • 更新位置: 更新鲸鱼个体的特征选择结果,并根据适应度值更新最优解。
  6. 终止条件:

    • 迭代次数: 达到预设的最大迭代次数时,停止迭代。
    • 适应度阈值: 达到预设的适应度值时,停止迭代。
  7. 特征选择结果:

    • 选择最优特征子集: 确定性能最佳的特征子集,这一子集能够使得XGBoost分类器的表现达到最优。
  8. 模型训练与评估:

    • 训练最终模型: 使用选择出的最优特征子集训练XGBoost分类器。
    • 模型评估: 在测试集上评估最终模型的性能,确保特征选择的有效性并验证其对模型的改进效果。

通过以上步骤,可以有效地利用鲸鱼智能优化算法来选择适合的特征子集,从而提升XGBoost分类器的性能。

二、实验结果

数据集可以任意替换

WOA特征选择 XGBoost分类器
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);                         % 循环取出不同类别的样本mid_size = size(mid_res, 1);                                  % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);                       % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数  
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = T_train;
t_test  = T_test ;

四、代码获取

私信即可 29米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于智能优化特征选择|基于鲸鱼WOA优化算法实现的特征选择研究Matlab程序(XGBoost分类器)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118365

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依