推荐大模型书籍|《扩散模型从原理到实战》,大模型爱好者有福了!!

2024-08-29 15:04

本文主要是介绍推荐大模型书籍|《扩散模型从原理到实战》,大模型爱好者有福了!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

**(https://i-blog.csdnimg.cn/direct/01b32b1893df4d0fb707a9246e4ce998.png)**

本书特点

本书内容基于 Hugging Face 的 Diffusion课程。无需读者具备专业绘画技能,**扩散模型能够快速让创意变为现实!**加速创作过程,拓展创作表达的可能性。

易学实用

以扩散模型理论知识为切入点,深入介绍了扩散模型生成图像的相关知识与实战案例,赠送配套Diffusion视频课程。

案例众多

配套大量案例(Stable Diffusion、ControlNet),帮你快速熟悉扩散模型。

注重效率

清晰的代码结构与代码注释,帮你快速实现扩散模型生成精美图像。

GitHub课程链接:https://github.com/huggingface/diffusion-models-class

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:《扩散模型从原理到实战》免费分享(安全链接,放心点击)]👈

作者介绍

李忻玮

RTE社区高级布道师,硕士毕业于美国常春藤盟校之一的哥伦比亚大学数据科学专业,现任声网人工智能算法工程师;主要研究方向是生成式人工智能、计算机视觉、自然语言处理、提示工程等。

苏步升

扩散模型算法工程师,AIGC创业者,Hugging Face中国社区本地化工作组成员。

徐浩然

毕业于中国海洋大学电子信息工程专业,现任声网音频算法工程师,从事扬声器声学设计、音频增强算法、音频质量评估算法等研究工作。

余海铭

本科毕业于暨南大学,硕士毕业于加州大学尔湾分校;先后在中国科学院深圳先进技术研究院、爱奇艺、美团等单位工作;主要研究方向是图像识别、图像生成、多模态及自动驾驶等领域。

大咖联袂推荐

本书系统地介绍了扩散模型的原理和相关细节,同时书中丰富的实战案例也将引领读者快速上手扩散模型。对于任何想要学习和了解扩散模型的人来说,本书都是颇具价值的参考资料。

目录 · · · · · ·

第1章 扩散模型简介

1.1 扩散模型的原理 1
1.1.1 生成模型 1
1.1.2 扩散过程 2
1.2 扩散模型的发展 5
1.2.1 开始扩散:基础扩散模型的提出与改进 6
1.2.2 加速生成:采样器 6
1.2.3 刷新纪录:基于显式分类器引导的扩散模型 7
1.2.4 引爆网络:基于CLIP的多模态图像生成 8
1.2.5 再次“出圈”:大模型的“再学习”方法——DreamBooth、LoRA和ControlNet 8
1.2.6 开启AI作画时代:众多商业公司提出成熟的图像生成解决方案 10
1.3 扩散模型的应用 12
1.3.1 计算机视觉  12
1.3.2 时序数据预测 14
1.3.3 自然语言 15
1.3.4 基于文本的多模态 16
1.3.5 AI基础科学 19

第2章 Hugging Face简介

2.1 Hugging Face核心功能介绍 21
2.2 Hugging Face开源库 28
2.3 Gradio工具介绍 30

第3章 从零开始搭建扩散模型

3.1 环境准备 33
3.1.1 环境的创建与导入 33
3.1.2 数据集测试 34
3.2 扩散模型之退化过程 34
3.3 扩散模型之训练 36
3.3.1  UNet网络 36
3.3.2 开始训练模型 38
3.4 扩散模型之采样过程 41
3.4.1 采样过程 41
3.4.2 与DDPM的区别 44
3.4.3 UNet2DModel模型 44
3.5 扩散模型之退化过程示例 57
3.5.1 退化过程 57
3.5.2 最终的训练目标 59
3.6 拓展知识 60
3.6.1 时间步的调节 60
3.6.2 采样(取样)的关键问题 61
3.7 本章小结 61

第4章 Diffusers实战

4.1 环境准备 62
4.1.1 安装Diffusers库 62
4.1.2 DreamBooth 64
4.1.3 Diffusers核心API 66
4.2 实战:生成美丽的蝴蝶图像 67
4.2.1 下载蝴蝶图像集 67
4.2.2 扩散模型之调度器 69
4.2.3 定义扩散模型 70
4.2.4 创建扩散模型训练循环 72
4.2.5 图像的生成 75
4.3 拓展知识 77
4.3.1 将模型上传到Hugging Face Hub  77
4.3.2 使用Accelerate库扩大训练模型的规模 79
4.4 本章小结 81

第5章 微调和引导

5.1 环境准备 86
5.2 载入一个预训练过的管线 87
5.3 DDIM——更快的采样过程 88
5.4 扩散模型之微调 91
5.4.1 实战:微调 91
5.4.2 使用一个最小化示例程序来微调模型 96
5.4.3 保存和载入微调过的管线 97
5.5 扩散模型之引导 98
5.5.1 实战:引导 100
5.5.2 CLIP引导 104
5.6 分享你的自定义采样训练 108
5.7 实战:创建一个类别条件扩散模型 111
5.7.1 配置和数据准备 111
5.7.2 创建一个以类别为条件的UNet模型 112
5.7.3 训练和采样 114
5.8 本章小结 117

第6章 Stable Diffusion

6.1 基本概念 118
6.1.1 隐式扩散 118
6.1.2 以文本为生成条件 119
6.1.3 无分类器引导 121
6.1.4 其他类型的条件生成模型:Img2Img、Inpainting与Depth2Img模型  122
6.1.5 使用DreamBooth进行微调 123
6.2 环境准备 124
6.3 从文本生成图像 125
6.4 Stable Diffusion Pipeline 128
6.4.1 可变分自编码器 128
6.4.2 分词器和文本编码器 129
6.4.3 UNet 131
6.4.4 调度器 132
6.4.5 DIY采样循环 134
6.5 其他管线介绍 136
6.5.1 Img2Img 136
6.5.2 Inpainting 138
6.5.3 Depth2Image 139
6.6 本章小结 140

第7章 DDIM反转

7.1 实战:反转 141
7.1.1 配置 141
7.1.2 载入一个预训练过的管线 142
7.1.3 DDIM采样 143
7.1.4 反转 147
7.2 组合封装 153
7.3 ControlNet的结构与训练过程 158
7.4 ControlNet示例 162
7.4.1 ControlNet与Canny Edge 162
7.4.2 ControlNet与M-LSD Lines 162
7.4.3 ControlNet与HED Boundary 163
7.4.4 ControlNet与涂鸦画 164
7.4.5 ControlNet与人体关键点 164
7.4.6 ControlNet与语义分割 164
7.5 ControlNet实战 165
7.6 本章小结 174

第8章 音频扩散模型

8.1 实战:音频扩散模型 175
8.1.1 设置与导入 175
8.1.2 在预训练的音频扩散模型管线中进行采样 176
8.1.3 从音频到频谱的转换 177
8.1.4 微调管线 180
8.1.5 训练循环 183
8.2 将模型上传到Hugging Face Hub 186
8.3 本章小结 187
附录A 精美图像集展示 188
附录B Hugging Face相关资源 202

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这本大模型《扩散模型从原理到实战》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:《扩散模型从原理到实战》免费分享(安全链接,放心点击)]👈

这篇关于推荐大模型书籍|《扩散模型从原理到实战》,大模型爱好者有福了!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118197

相关文章

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习