AI基础 -- 练手之预测耗时方案

2024-08-29 13:36

本文主要是介绍AI基础 -- 练手之预测耗时方案,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

预测耗时的方案

1. 初始化权重

计算初始权重 w w w
w = a 2 − a 1 1 w = \frac{a2 - a1}{1} w=1a2a1

2. 预测值

使用权重和实际值 a 2 a2 a2 来计算预测值 y 3 y3 y3
y 3 = w ⋅ 1 + a 2 y3 = w \cdot 1 + a2 y3=w1+a2

3. 损失函数

计算预测值 y 3 y3 y3 与实际值 a 3 a3 a3 之间的损失:

常见的损失函数为均方误差(MSE),即:
MSE = ( y 3 − a 3 ) 2 \text{MSE} = (y3 - a3)^2 MSE=(y3a3)2

4. 更新权重

4.1 损失函数对权重的偏导数

首先,对损失函数 MSE \text{MSE} MSE 关于权重 w w w 的偏导数进行求解:

MSE = ( y 3 − a 3 ) 2 \text{MSE} = (y3 - a3)^2 MSE=(y3a3)2

计算 y 3 y3 y3 w w w 的导数:

y 3 = w ⋅ 1 + a 2 y3 = w \cdot 1 + a2 y3=w1+a2

∂ y 3 ∂ w = 1 \frac{\partial y3}{\partial w} = 1 wy3=1

使用链式法则计算均方误差损失函数对权重的偏导数:

∂ MSE ∂ w = 2 ⋅ ( y 3 − a 3 ) ⋅ ∂ y 3 ∂ w \frac{\partial \text{MSE}}{\partial w} = 2 \cdot (y3 - a3) \cdot \frac{\partial y3}{\partial w} wMSE=2(y3a3)wy3

代入 ∂ y 3 ∂ w = 1 \frac{\partial y3}{\partial w} = 1 wy3=1

∂ MSE ∂ w = 2 ⋅ ( y 3 − a 3 ) ⋅ 1 \frac{\partial \text{MSE}}{\partial w} = 2 \cdot (y3 - a3) \cdot 1 wMSE=2(y3a3)1

∂ MSE ∂ w = 2 ⋅ ( y 3 − a 3 ) \frac{\partial \text{MSE}}{\partial w} = 2 \cdot (y3 - a3) wMSE=2(y3a3)

4.2 更新权重

使用梯度下降法更新权重 w w w

w = w − η ⋅ ∂ MSE ∂ w w = w - \eta \cdot \frac{\partial \text{MSE}}{\partial w} w=wηwMSE

代入偏导数:

w = w − η ⋅ ( 2 ⋅ ( y 3 − a 3 ) ) w = w - \eta \cdot (2 \cdot (y3 - a3)) w=wη(2(y3a3))

其中 η \eta η 是学习率。

4.3 学习率的选取

学习率 η \eta η 是控制每次权重更新幅度的超参数。选择合适的学习率非常重要:

  • 过小的学习率:收敛速度慢,可能导致训练时间过长。
  • 过大的学习率:可能导致训练不稳定,甚至发散。

选择学习率的一些建议:

  • 实验法:从一个较小的值开始(如 0.01 或 0.001),然后逐步增加,观察损失函数的变化。
  • 学习率调度:可以使用学习率衰减策略,在训练过程中逐渐减小学习率,以提高训练稳定性和收敛效果。

4.4 评估学习效果

学习过程完成的标志包括:

  • 损失函数收敛:损失函数值趋于稳定,变化幅度变小。可以设置一个阈值(如损失值变化小于 0.001)来判断收敛。
  • 预测精度:预测值与实际值的差异变小。可以使用均方误差(MSE)或其他评价指标来评估预测精度。
  • 验证集表现:如果使用了验证集,则验证集上的损失函数值趋于稳定,且不再显著下降,说明模型的学习效果良好。

这篇关于AI基础 -- 练手之预测耗时方案的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1118006

相关文章

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

C#实现高性能拍照与水印添加功能完整方案

《C#实现高性能拍照与水印添加功能完整方案》在工业检测、质量追溯等应用场景中,经常需要对产品进行拍照并添加相关信息水印,本文将详细介绍如何使用C#实现一个高性能的拍照和水印添加功能,包含完整的代码实现... 目录1. 概述2. 功能架构设计3. 核心代码实现python3.1 主拍照方法3.2 安全HBIT

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与