TensorFlow图变量tf.Variable的用法解析

2024-08-29 10:48

本文主要是介绍TensorFlow图变量tf.Variable的用法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorFlow中的图变量,跟我们平时所接触的一般变量在用法上有很大的差异。尤其对于那些初次接触此类深度学习库的编程人员来说,会显得十分难上手。

本文将按照如下篇幅深入剖析tf.Variable这个核心概念:

图变量的初始化方法
两种定义图变量的方法
scope如何划分命名空间
图变量的复用
图变量的种类


1.图变量的初始化方法
对于一般的Python代码,变量的初始化就是变量的定义,向下面这样:

In [1]: x = 3
In [2]: y = 3 * 5
In [3]: y
Out[3]: 15

如果我们模仿上面的写法来进行TensorFlow编程,就会出现下面的”怪现象”:

In [1]: import tensorflow as tf
In [2]: x = tf.Variable(3, name='x')
In [3]: y = x * 5
In [4]: print(y)
Tensor("mul:0", shape=(), dtype=int32)

y的值并不是我们预想中的15,而是一个莫名其妙的输出——”

In [1]: import tensorflow as tf
In [2]: x = tf.Variable(3, name='x')
In [3]: y = x * 5
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(tf.global_variables_initializer())
In [6]: sess.run(y)
Out[6]: 15

在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。想要将所有图变量进行集体初始化时应该使用tf.global_variables_initializer。

2.两种定义图变量的方法
tf.Variable
tf.Variable.init(initial_value, trainable=True, collections=None, validate_shape=True, name=None)

参数名称    参数类型    含义
initial_value    所有可以转换为Tensor的类型    变量的初始值
trainable    bool    如果为True,会把它加入到GraphKeys.TRAINABLE_VARIABLES,才能对它使用Optimizer
collections    list    指定该图变量的类型、默认为[GraphKeys.GLOBAL_VARIABLES]
validate_shape    bool    如果为False,则不进行类型和维度检查
name    string    变量的名称,如果没有指定则系统会自动分配一个唯一的值
虽然有一堆参数,但只有第一个参数initial_value是必需的,用法如下(assign函数用于给图变量赋值):

In [1]: import tensorflow as tf
In [2]: v = tf.Variable(3, name='v')
In [3]: v2 = v.assign(5)
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(v.initializer)
In [6]: sess.run(v)
Out[6]: 3
In [7]: sess.run(v2)
Out[7]: 5


tf.get_variable
tf.get_variable跟tf.Variable都可以用来定义图变量,但是前者的必需参数(即第一个参数)并不是图变量的初始值,而是图变量的名称。

tf.Variable的用法要更丰富一点,当指定名称的图变量已经存在时表示获取它,当指定名称的图变量不存在时表示定义它,用法如下:

In [1]: import tensorflow as tf
In [2]: init = tf.constant_initializer([5])
In [3]: x = tf.get_variable('x', shape=[1], initializer=init)
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(x.initializer)
In [6]: sess.run(x)
Out[6]: array([ 5.], dtype=float32)

3.scope如何划分命名空间
一个深度学习模型的参数变量往往是成千上万的,不加上命名空间加以分组整理,将会成为可怕的灾难。TensorFlow的命名空间分为两种,tf.variable_scope和tf.name_scope。

下面示范使用tf.variable_scope把图变量划分为4组:

for i in range(4):
    with tf.variable_scope('scope-{}'.format(i)):
        for j in range(25):
             v = tf.Variable(1, name=str(j))
可视化输出的结果如下:

下面让我们来分析tf.variable_scope和tf.name_scope的区别:

tf.variable_scope
当使用tf.get_variable定义变量时,如果出现同名的情况将会引起报错

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('var', [1])
   ...:     v2 = tf.get_variable('var', [1])
ValueError: Variable scope/var already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

而对于tf.Variable来说,却可以定义“同名”变量

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.Variable(1, name='var')
   ...:     v2 = tf.Variable(2, name='var')
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope/var:0', 'scope/var_1:0')

但是把这些图变量的name属性打印出来,就可以发现它们的名称并不是一样的。

如果想使用tf.get_variable来定义另一个同名图变量,可以考虑加入新一层scope,比如:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope1'):
   ...:     v1 = tf.get_variable('var', shape=[1])
   ...:     with tf.variable_scope('scope2'):
   ...:         v2 = tf.get_variable('var', shape=[1])
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope1/var:0', 'scope1/scope2/var:0')

tf.name_scope
当tf.get_variable遇上tf.name_scope,它定义的变量的最终完整名称将不受这个tf.name_scope的影响,如下:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('v_scope'):
   ...:     with tf.name_scope('n_scope'):
   ...:         x = tf.Variable([1], name='x')
   ...:         y = tf.get_variable('x', shape=[1], dtype=tf.int32)
   ...:         z = x + y
   ...:
In [3]: x.name, y.name, z.name
Out[3]: ('v_scope/n_scope/x:0', 'v_scope/x:0', 'v_scope/n_scope/add:0')

4.图变量的复用
想象一下,如果我们正在定义一个循环神经网络RNN,想复用上一层的参数以提高模型最终的表现效果,应该怎么做呢?

做法一:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('var', [1])
   ...:     tf.get_variable_scope().reuse_variables()
   ...:     v2 = tf.get_variable('var', [1])
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope/var:0', 'scope/var:0')


做法二:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('x', [1])
   ...:
In [3]: with tf.variable_scope('scope', reuse=True):
   ...:     v2 = tf.get_variable('x', [1])
   ...:
In [4]: v1.name, v2.name
Out[4]: ('scope/x:0', 'scope/x:0')

5.图变量的种类
TensorFlow的图变量分为两类:local_variables和global_variables。

如果我们想定义一个不需要长期保存的临时图变量,可以向下面这样定义它:

with tf.name_scope("increment"):
    zero64 = tf.constant(0, dtype=tf.int64)
    current = tf.Variable(zero64, name="incr", trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES])


--------------------- 
作者:烧煤的快感 
来源:CSDN 
原文:https://blog.csdn.net/gg_18826075157/article/details/78368924 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于TensorFlow图变量tf.Variable的用法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117644

相关文章

SpringBoot中@Value注入静态变量方式

《SpringBoot中@Value注入静态变量方式》SpringBoot中静态变量无法直接用@Value注入,需通过setter方法,@Value(${})从属性文件获取值,@Value(#{})用... 目录项目场景解决方案注解说明1、@Value("${}")使用示例2、@Value("#{}"php

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推