TensorFlow图变量tf.Variable的用法解析

2024-08-29 10:48

本文主要是介绍TensorFlow图变量tf.Variable的用法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TensorFlow中的图变量,跟我们平时所接触的一般变量在用法上有很大的差异。尤其对于那些初次接触此类深度学习库的编程人员来说,会显得十分难上手。

本文将按照如下篇幅深入剖析tf.Variable这个核心概念:

图变量的初始化方法
两种定义图变量的方法
scope如何划分命名空间
图变量的复用
图变量的种类


1.图变量的初始化方法
对于一般的Python代码,变量的初始化就是变量的定义,向下面这样:

In [1]: x = 3
In [2]: y = 3 * 5
In [3]: y
Out[3]: 15

如果我们模仿上面的写法来进行TensorFlow编程,就会出现下面的”怪现象”:

In [1]: import tensorflow as tf
In [2]: x = tf.Variable(3, name='x')
In [3]: y = x * 5
In [4]: print(y)
Tensor("mul:0", shape=(), dtype=int32)

y的值并不是我们预想中的15,而是一个莫名其妙的输出——”

In [1]: import tensorflow as tf
In [2]: x = tf.Variable(3, name='x')
In [3]: y = x * 5
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(tf.global_variables_initializer())
In [6]: sess.run(y)
Out[6]: 15

在TensorFlow的世界里,变量的定义和初始化是分开的,所有关于图变量的赋值和计算都要通过tf.Session的run来进行。想要将所有图变量进行集体初始化时应该使用tf.global_variables_initializer。

2.两种定义图变量的方法
tf.Variable
tf.Variable.init(initial_value, trainable=True, collections=None, validate_shape=True, name=None)

参数名称    参数类型    含义
initial_value    所有可以转换为Tensor的类型    变量的初始值
trainable    bool    如果为True,会把它加入到GraphKeys.TRAINABLE_VARIABLES,才能对它使用Optimizer
collections    list    指定该图变量的类型、默认为[GraphKeys.GLOBAL_VARIABLES]
validate_shape    bool    如果为False,则不进行类型和维度检查
name    string    变量的名称,如果没有指定则系统会自动分配一个唯一的值
虽然有一堆参数,但只有第一个参数initial_value是必需的,用法如下(assign函数用于给图变量赋值):

In [1]: import tensorflow as tf
In [2]: v = tf.Variable(3, name='v')
In [3]: v2 = v.assign(5)
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(v.initializer)
In [6]: sess.run(v)
Out[6]: 3
In [7]: sess.run(v2)
Out[7]: 5


tf.get_variable
tf.get_variable跟tf.Variable都可以用来定义图变量,但是前者的必需参数(即第一个参数)并不是图变量的初始值,而是图变量的名称。

tf.Variable的用法要更丰富一点,当指定名称的图变量已经存在时表示获取它,当指定名称的图变量不存在时表示定义它,用法如下:

In [1]: import tensorflow as tf
In [2]: init = tf.constant_initializer([5])
In [3]: x = tf.get_variable('x', shape=[1], initializer=init)
In [4]: sess = tf.InteractiveSession()
In [5]: sess.run(x.initializer)
In [6]: sess.run(x)
Out[6]: array([ 5.], dtype=float32)

3.scope如何划分命名空间
一个深度学习模型的参数变量往往是成千上万的,不加上命名空间加以分组整理,将会成为可怕的灾难。TensorFlow的命名空间分为两种,tf.variable_scope和tf.name_scope。

下面示范使用tf.variable_scope把图变量划分为4组:

for i in range(4):
    with tf.variable_scope('scope-{}'.format(i)):
        for j in range(25):
             v = tf.Variable(1, name=str(j))
可视化输出的结果如下:

下面让我们来分析tf.variable_scope和tf.name_scope的区别:

tf.variable_scope
当使用tf.get_variable定义变量时,如果出现同名的情况将会引起报错

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('var', [1])
   ...:     v2 = tf.get_variable('var', [1])
ValueError: Variable scope/var already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:

而对于tf.Variable来说,却可以定义“同名”变量

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.Variable(1, name='var')
   ...:     v2 = tf.Variable(2, name='var')
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope/var:0', 'scope/var_1:0')

但是把这些图变量的name属性打印出来,就可以发现它们的名称并不是一样的。

如果想使用tf.get_variable来定义另一个同名图变量,可以考虑加入新一层scope,比如:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope1'):
   ...:     v1 = tf.get_variable('var', shape=[1])
   ...:     with tf.variable_scope('scope2'):
   ...:         v2 = tf.get_variable('var', shape=[1])
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope1/var:0', 'scope1/scope2/var:0')

tf.name_scope
当tf.get_variable遇上tf.name_scope,它定义的变量的最终完整名称将不受这个tf.name_scope的影响,如下:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('v_scope'):
   ...:     with tf.name_scope('n_scope'):
   ...:         x = tf.Variable([1], name='x')
   ...:         y = tf.get_variable('x', shape=[1], dtype=tf.int32)
   ...:         z = x + y
   ...:
In [3]: x.name, y.name, z.name
Out[3]: ('v_scope/n_scope/x:0', 'v_scope/x:0', 'v_scope/n_scope/add:0')

4.图变量的复用
想象一下,如果我们正在定义一个循环神经网络RNN,想复用上一层的参数以提高模型最终的表现效果,应该怎么做呢?

做法一:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('var', [1])
   ...:     tf.get_variable_scope().reuse_variables()
   ...:     v2 = tf.get_variable('var', [1])
   ...:
In [3]: v1.name, v2.name
Out[3]: ('scope/var:0', 'scope/var:0')


做法二:

In [1]: import tensorflow as tf
In [2]: with tf.variable_scope('scope'):
   ...:     v1 = tf.get_variable('x', [1])
   ...:
In [3]: with tf.variable_scope('scope', reuse=True):
   ...:     v2 = tf.get_variable('x', [1])
   ...:
In [4]: v1.name, v2.name
Out[4]: ('scope/x:0', 'scope/x:0')

5.图变量的种类
TensorFlow的图变量分为两类:local_variables和global_variables。

如果我们想定义一个不需要长期保存的临时图变量,可以向下面这样定义它:

with tf.name_scope("increment"):
    zero64 = tf.constant(0, dtype=tf.int64)
    current = tf.Variable(zero64, name="incr", trainable=False, collections=[ops.GraphKeys.LOCAL_VARIABLES])


--------------------- 
作者:烧煤的快感 
来源:CSDN 
原文:https://blog.csdn.net/gg_18826075157/article/details/78368924 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于TensorFlow图变量tf.Variable的用法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117644

相关文章

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

mapstruct中的@Mapper注解的基本用法

《mapstruct中的@Mapper注解的基本用法》在MapStruct中,@Mapper注解是核心注解之一,用于标记一个接口或抽象类为MapStruct的映射器(Mapper),本文给大家介绍ma... 目录1. 基本用法2. 常用属性3. 高级用法4. 注意事项5. 总结6. 编译异常处理在MapSt

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

java中long的一些常见用法

《java中long的一些常见用法》在Java中,long是一种基本数据类型,用于表示长整型数值,接下来通过本文给大家介绍java中long的一些常见用法,感兴趣的朋友一起看看吧... 在Java中,long是一种基本数据类型,用于表示长整型数值。它的取值范围比int更大,从-922337203685477

MyBatis ResultMap 的基本用法示例详解

《MyBatisResultMap的基本用法示例详解》在MyBatis中,resultMap用于定义数据库查询结果到Java对象属性的映射关系,本文给大家介绍MyBatisResultMap的基本... 目录MyBATis 中的 resultMap1. resultMap 的基本语法2. 简单的 resul

一文全面详解Python变量作用域

《一文全面详解Python变量作用域》变量作用域是Python中非常重要的概念,它决定了在哪里可以访问变量,下面我将用通俗易懂的方式,结合代码示例和图表,带你全面了解Python变量作用域,需要的朋友... 目录一、什么是变量作用域?二、python的四种作用域作用域查找顺序图示三、各作用域详解1. 局部作

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir