RKNPU入门与实践 ---- 混合量化

2024-08-29 10:36

本文主要是介绍RKNPU入门与实践 ---- 混合量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、混合量化

1.1 概念介绍 

1.1.1 hybrid_quantization_step1

1.1.2 hybrid_quantization_step2

二、实际编写程序 

2.1混合量化第一阶段 

2.2 混合量化第二阶段 

三、混合量化第一步接口参数proposal

前言

为什么要进行混合量化?
答案:提高模型每一层精度,提高模型精度 
从博文:
RKNPU2从入门到实践 --- 【6】模型评估----量化精度分析-CSDN博客我们得到了量化精度,如下图所示,下图表示的是连板推理时模型的量化精度,我们以input.25这一层为例,发现该层的runtime_error中的golden_err【计算的是上一层的输出层,也即input.25当前层的精度】只有0.930068,这是比较小的。

那对于这种问题,该如何处理呢?
这就需要混合量化来优化这个精度了。

一、混合量化

1.1 概念介绍 

1.1.1 hybrid_quantization_step1

混合量化第一阶段

      使用混合量化功能时,第一阶段调用的主要接口是 hybrid_quantization_step1,用于生成临时 模 型 文 件 ( {model_name}.model ) 、 数 据 文 件 ( {model_name}.data ) 和 量 化 配 置 文 件({model_name}.quantization.cfg)。接口详情如下:

1.1.2 hybrid_quantization_step2

混合量化第二阶段

用于使用混合量化功能时生成 RKNN 模型,接口详情如下: 

举例如下:

二、实际编写程序 

创建项目文件夹,以及相应的文件,并将相关资料放入项目文件夹中,如下图所示。 


在step1.py文件中,先写入如下代码:

from rknn.api import RKNNif __name__ == '__main__':# 第一步:创建RKNN对象rknn = RKNN()# 第二步:配置RKNN对象参数rknn.config(mean_values=[[123.675,116.28,103.53]],std_values=[[58.395,58.395,58.395]],target_platform='rk3588'# 其余参数保持默认即可)# 第三步:调用load_pytorch接口导入pt模型rknn.load_pytorch(model='./resnet18.pt',input_size_list=[[1, 3, 224, 224]])# 最后一步:释放RKNN对象rknn.release()

2.1混合量化第一阶段 

根据流程图,第四步为混合量化的step1,对应的代码为:

添入step1代码后的整体代码如下:

from rknn.api import RKNNif __name__ == '__main__':# 第一步:创建RKNN对象rknn = RKNN()# 第二步:配置RKNN对象参数rknn.config(mean_values=[[123.675,116.28,103.53]],std_values=[[58.395,58.395,58.395]],target_platform='rk3588'# 其余参数保持默认即可)# 第三步:调用load_pytorch接口导入pt模型rknn.load_pytorch(model='./resnet18.pt',input_size_list=[[1, 3, 224, 224]])# 使用hybrid_quantization_step1 接口进行混合量化的第一步rknn.hybrid_quantization_step1(dataset='dataset.txt', # 表示模型量化所需要的数据集rknn_batch_size=-1, # 表示自动调整模型输入batch数量proposal=False, # 默认为False。设置为True,可以自动产生混合量化的配置建议值proposal_dataset_size=1)# 最后一步:释放RKNN对象rknn.release()

接下来运行该程序:
 得到如下图:

我们要对得到的resnet18.quantization.cfg文件进行修改。 该文件内容如下所示:

      修改的地方为该文件的第一行,即custom_quantize_layers:{},将input.25层由量化层转换为非量化层,如下所示:

2.2 混合量化第二阶段 

 在step2.py文件中编写程序:

from rknn.api import RKNNif __name__ == '__main__':# 创建RKNN对象rknn = RKNN()# 直接调用hybrid_quantization_step2接口进行混合量化的第二个步骤rknn.hybrid_quantization_step2(model_input='resnet18.model',# 表示第一步生成的模型文件data_input='resnet18.data', #表示第一步生成的配置文件model_quantization_cfg='resnet18.quantization.cfg' # 表示第一步生成的量化配置文件)# 使用量化精度分析接口评估混合量化后的RKNN模型rknn.accuracy_analysis(inputs=['./space_shuttle_224.jpg'],output_dir='./snapshot',target='rk3588')# 调用RKNN模型导出接口(方便后续模型部署)rknn.export_rknn(export_path='./resnet18.rknn')#释放RKNN对象rknn.release()

运行step2.py程序: 

此处有bug,后续更新!!

上图来自于:06_RKNN 模型评估-量化精度分析_哔哩哔哩_bilibili
可以看到,input.25层的golden_err从原来的0.930068变为了现在的0.999746。精度变高。
将经过混合量化和没有经过混合量化的进行对比,这里贴出没有经过混合量化的精度信息截图。

      我们从上图中可以看到,input.25这一层的下一层是142层,但是在经过混合量化之后,我们发现input.25层的下一层并不是142层,而是input.25__int8,这一层在input.25层和142层中间,这是为什么呢?这会带来什么样的后果呢?
      由于142层的输入类型为int8类型,而input.25已经变为float16类型,故浮点数转换为int8类型,因此才会有input.25__int8这一层的出现。我们看到,input.25__int8层的golden_err只有0.930005。因此,这么一操作,精度不增反减了,那该如何补救呢?
      我们干脆直接跳过input.25__int8这一层,因此修改.cfg文件,如下图所示:

加入的 '142': float16 表示将input.25层的输出层,即142层由量化层变为非量化层。
然后重新运行step2.py程序,得到(下图是将终端打印信息拷贝到记事本中,便于观察):

可以看到,input.25 层周围的精度值都变高了,这也就证明了混合量化效果有效。
以上是对 resnet18.pt 模型的某一层进行混合量化。若对模型进行更多层的混合量化,那么模型的效果会大大提高。

三、混合量化第一步接口参数proposal

      在上面,proposal这个参数的取值为False,导致了我们在混合量化第二阶段修改.cfg文件时需要手动去修改。
      那么我们将这个参数取值设置为True,又会有怎样的变化呢?

随后运行step1.py程序,得到:

我们来看看.cfg文件有什么变化:

      我们发现.cfg文件中的custom_quantize_layers由proposal取值为False时的空变为了proposal取值为True时的好多内容。
这相当于是手动筛选精度差的层变为了自动筛选精度差的层。何乐而不为呢? 

这篇关于RKNPU入门与实践 ---- 混合量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117613

相关文章

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的