AI学习记录 - 模型训练中怎么反向传播以及学习率的影响

2024-08-29 08:44

本文主要是介绍AI学习记录 - 模型训练中怎么反向传播以及学习率的影响,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

画图不易,有用点赞

解释反向传播中具体的运行

假设我们有个简易的神经元连接,如下

在这里插入图片描述

目的是求解 绿色w = 5 权重对结果 60的影响程度,因为我们得知道 绿色w = 5 对结果的影响程度和影响方向,才好将 绿色w = 5 是增大还是缩小,增大多少或者减少多少。
我们知道神经元其实y = w * x + b,多层之后,如图所示

在这里插入图片描述

根据模型直接得出的结果是 60,但是假设真实值是 90,那么60太小了,我们需要增大 绿色w=5 的权重,让 60慢慢接近90,怎么做呢?

我们知道了求影响程度,也是一级一级的求,求的是当前公式对下一级的影响程度也就是导数,最后相乘叠加起来,上图知道 w = 5 对 60 的影响程度是 500,当 绿色w = 5 增加 1 , 60 变成 560, 在实际训练过程中,500太大了,也就是直接求出来的导数太大,我们会先使用学习率进行缩小计算:

500 * 0.01(学习率) = 5 (变化程度)
5(原权重) + 5 (变化程度) = 10 (新权重)

我们将 10 覆盖绿色框的 5 ,这不就更新权重了吗,更新权重之后,又将 红色框 2 输入,得出 1060, 哇。。。。。。,学习率太大了,可以变成0.00001试试。

在这里插入图片描述

在实际的场景中,计算公式种类铁定不会这么单一,会融合了超级多的复杂的数学公式,这就涉及到复合多元函数求导数了,我们要依据现行的导数公式进行拆分,拆分成n个小公式,分别对n个小公式求导,然后将所有的导数相乘,就可以得出任意一个权重和偏置对结果的影响程度,然后调整它。

小说一下
怎么求解其中一个变量对结果的影响程度?
假设对其中一个独立小公式变量求导,每一个公式都有其对应的导数公式,x输入到公式,输出y,那么x输入到其对应的导数公式,就得到了一个导数,也就是得到了当前公式对下一级的影响程度。一般一个公式会有很多的变量但是不需要拆分的情况,我们就直接把当前公式的上一级的输出当成是当前的公式的常量值即可。

        sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1h1 = sigmoid(sum_h1)sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2h2 = sigmoid(sum_h2)sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3o1 = sigmoid(sum_o1)y_pred = o1# --- Calculate partial derivatives.# --- Naming: d_L_d_w1 represents "partial L / partial w1"d_L_d_ypred = -2 * (y_true - y_pred)# Neuron o1d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)d_ypred_d_b3 = deriv_sigmoid(sum_o1)d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1)# Neuron h1d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)d_h1_d_b1 = deriv_sigmoid(sum_h1)
``# 画图不易,有用点赞

这篇关于AI学习记录 - 模型训练中怎么反向传播以及学习率的影响的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117395

相关文章

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

docker编写java的jar完整步骤记录

《docker编写java的jar完整步骤记录》在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署,:本文主要介绍docker编写java的jar的相关资料,文中通过代... 目录all-docker/生成Docker打包部署文件配置服务A的Dockerfile (a/Docke

MySQL使用EXISTS检查记录是否存在的详细过程

《MySQL使用EXISTS检查记录是否存在的详细过程》EXISTS是SQL中用于检查子查询是否返回至少一条记录的运算符,它通常用于测试是否存在满足特定条件的记录,从而在主查询中进行相应操作,本文给大... 目录基本语法示例数据库和表结构1. 使用 EXISTS 在 SELECT 语句中2. 使用 EXIS

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

基于Spring Boot 的小区人脸识别与出入记录管理系统功能

《基于SpringBoot的小区人脸识别与出入记录管理系统功能》文章介绍基于SpringBoot框架与百度AI人脸识别API的小区出入管理系统,实现自动识别、记录及查询功能,涵盖技术选型、数据模型... 目录系统功能概述技术栈选择核心依赖配置数据模型设计出入记录实体类出入记录查询表单出入记录 VO 类(用于

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语