资管过程日报指标异常分析

2024-08-29 07:38

本文主要是介绍资管过程日报指标异常分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

资管过程日报指标异常分析

1.数据处理

2.异常值标准制定

3.画图

4.导出word

#!/usr/bin/env python
# coding: utf-8import matplotlib.pyplot as plt
import pandas as pd 
import numpy as np
plt.rcParams['font.sans-serif']=['Simhei'] #显示中文
plt.rcParams['axes.unicode_minus']=False   #显示负号col=['日期','类别','队列','队列人数','当日剩余案件量','尝试呼叫次数','当日人均案件量','尝试呼叫次数','接通次数','接通率','当日有效呼出次数','联络客户数','可联客户数','有效联络客户数','可联客户占比','有效联络率','PTP']
xlsx = pd.ExcelFile('D:\我的项目\资管过程日报指标异常值分析\资管过程日报.xlsx')
df = pd.read_excel(xlsx, '原始数据分开展示',header=0,usecols=col)import datetime
jsontime = '2021-03-01'  # 数据开始时间,注意调整
date_start=datetime.datetime.strptime(jsontime,"%Y-%m-%d")
df_21=df[df['日期']>=date_start]nan_lines = df_21['类别'].isnull()  # 找出类别为空的行
mm=df_21[nan_lines]
df_remain=df_21.drop(index=mm.index, axis=0) # 删除s类别为空的行df_remain2=df_remain.drop(['日期', '类别','队列'], axis=1) df_remain2=df_remain2.astype('float')
df_remain2.dtypes
df_remain2.info()df_remain1 = df_remain.reindex(columns=['日期', '类别','队列'])df2 = pd.concat([df_remain1, df_remain2], axis=1)
queue=['城市信贷_M0(资管整体)','城市信贷_M0_预测后手工队列','城市信贷_M0_预测外呼队列','城市信贷_M1_冠军队列','城市信贷_M1_挑战者队列','城市信贷M2','城市信贷M3','城市信贷高期M4-M6','城市信贷高期M7-M12','城市信贷高期M13+','宜人贷预催收','宜人贷初期手工','宜人贷中期M2','宜人贷中期M3','宜人贷高期M4-M6','宜人贷高期M7-M12','宜人贷高期M13+','宜人小贷_M0(资管整体)','宜人小贷初期','宜人小贷M2','宜车贷M2','宜车贷M3','宜车贷高期M4-M6','宜车贷高期M7+']
df3=df2[df2['类别'].isin(queue)]
df_group = df3.groupby(['类别','日期']).agg({'队列人数':'sum','当日剩余案件量':'sum','尝试呼叫次数':'sum','接通次数':'sum','当日有效呼出次数':'sum','联络客户数':'sum','可联客户数':'sum','有效联络客户数':'sum','PTP':'sum'})df_group['人均案件量']=df_group['当日剩余案件量']/df_group['队列人数']
df_group['人均接通量']=df_group['接通次数']/df_group['队列人数']
df_group['人均尝试呼叫量']=df_group['尝试呼叫次数']/df_group['队列人数']
df_group['呼叫强度']=df_group['尝试呼叫次数']/df_group['当日剩余案件量']
df_group['接通率']=df_group['接通次数']/df_group['尝试呼叫次数']
df_group['可联率']=df_group['可联客户数']/df_group['联络客户数']
df_group['PTP率']=df_group['PTP']/df_group['可联客户数']
df_group=df_group.rename(columns={"当日剩余案件量":"分案量","队列人数":"催收员数量"})#识别异常值index_list=['分案量','催收员数量','人均案件量','人均接通量','人均尝试呼叫量','呼叫强度','接通率','可联率','PTP率']def outlier(dataframe,a, threshold=2.2):dd = dataframe[a]ff = dataframe.reindex(columns=[a])   MAD = (dd - dd.median()).abs().median()if MAD!=0:zscore = ((dd - dd.median())* 0.6475 /MAD).abs()        ff.loc[:,'isAnomaly'] = zscore > thresholdelse:ff.loc[:,'isAnomaly']=Falseff.loc[:,'med'] = dd.median()ff.loc[:,'mad'] = MADreturn ffdf_outlier = pd.DataFrame(data=[])
for group in queue:df_group_tag=df_group.xs(key=group, level='类别')for ind in index_list:da = outlier(df_group_tag,ind)da['index']=indda.columns=['value','isAnomaly','med','mad','index']da['group']=groupdf_outlier=pd.concat((da,df_outlier), axis=0)        df_outlier2=df_outlier.loc[df_outlier.isAnomaly==True,:]    prd=lambda x: '城市信贷' if '城市信贷' in x else ('宜人贷' if '宜人贷' in x else ('宜人小贷' if '宜人小贷' in x else '宜车贷'))
df_outlier2['prd']=df_outlier2['group'].apply(prd)
df_outlier['prd']=df_outlier['group'].apply(prd)df11 = pd.pivot_table(df_outlier, index = ['group','日期'], columns = ['index'], aggfunc = {'value':'sum'}).reset_index()df11.drop([0, 1], axis=0, inplace=True)
df11.columns=['group','日期','PTP率','人均尝试呼叫量','人均接通量','人均案件量','催收员数量','分案量','可联率','呼叫强度','接通率']import time
today=time.strftime('%Y-%m-%d',time.localtime(time.time()))
path="D:/我的项目/资管过程日报指标异常值分析/"
with pd.ExcelWriter(path+"资管过程日报异常值_%s.xlsx" %today) as writer:df_outlier.to_excel(writer, sheet_name='所有指标')df_outlier2.to_excel(writer, sheet_name='异常数据')# df11.to_excel(writer, sheet_name='透视表')writer = pd.ExcelWriter(path+"资管过程日报异常值_%s_拆分.xlsx" %today)
for group in list(queue):df12 = df11[df11['group'] == group]df12.to_excel(writer, sheet_name= group ,index=False)
writer.save()# 作图
for group in queue:df_group_tag=df_group.xs(key=group, level='类别')for ind in index_list:da = outlier(df_group_tag,ind)da['index']=indda.columns=['value','isAnomaly','med','mad','index']da['date']=da.indexda['date']=da['date'].apply(lambda x:x.strftime('%m-%d')) #转换成月日格式fig = plt.figure()fig.set_size_inches(10,6)ax1 = fig.add_subplot(2, 1, 1)ax2 = fig.add_subplot(2, 1, 2)        ax1.plot(da['date'],da['value'],color='#27727B',lw=1.5)        ax2.plot(da['date'],da['isAnomaly'],color='#C1232B',lw=1.5)plt.title("%s" %ind, fontsize=12)plt.tight_layout()fig.savefig('D:/我的项目/资管过程日报指标异常值分析/图片/%s_%s.png' %(group,ind))
#         print(group)plt.close()   #图片太多的情况下,需要关闭plt,否则会出现warning# 图片导入到word里from docx import Document #创建文档
from docx.oxml.ns import qn #中文
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT #段落
from docx.shared import Pt,RGBColor,Mm,Cm#大小磅数/字号
from openpyxl import load_workbook
from docx.enum.section import WD_ORIENTATION, WD_SECTION_START # 导入节方向和分解符类型
from docx.enum.text import WD_ALIGN_PARAGRAPHword_document = Document()  # 创建word文档对象
word_document.styles['Normal'].font.name = u'微软雅黑'  # 正文/标题1/标题2 (英文)
word_document.styles['Normal']._element.rPr.rFonts.set(qn('w:eastAsia'), u'微软雅黑')  # 中文# ----段落创建P1 标题行-----
name='资管过程日报异常值分析'
run = word_document.add_heading('', level=1).add_run(u"%s" %name)  #添加标题
run.font.name=u'微软雅黑'
run._element.rPr.rFonts.set(qn('w:eastAsia'), u'微软雅黑') 
run.font.size = Pt(20)
run.bold = Truefor title in queue:p2 = word_document.add_heading('', level=2).add_run(u"%s" %title)  #添加标题p2.font.name=u'微软雅黑'p2._element.rPr.rFonts.set(qn('w:eastAsia'), u'微软雅黑') p2.font.size = Pt(16)p2.bold = Truefor ind in index_list:# ----段落创建-----   p5 = word_document.add_paragraph()  # 向word添加段落p5.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER  # 段落居中对齐# ----添加标题---p5 = word_document.add_heading('', level=3).add_run(u"%s" %ind)  #添加标题p5.font.name=u'微软雅黑'p5._element.rPr.rFonts.set(qn('w:eastAsia'), u'微软雅黑') p5.font.size = Pt(16)p5.bold = True# ----段落创建---p4 = word_document.add_paragraph()  # 向word添加段落p4.alignment = WD_PARAGRAPH_ALIGNMENT.CENTER  # 段落居中对齐# ----添加图片---run_text_4 = p4.add_run()run_text_4.add_picture('D:/我的项目/资管过程日报指标异常值分析/图片/%s_%s.png' %(title,ind) ,width=Mm(200))
#         print('pic/%s_%s.png' %(title,ind))word_document.save('D:/我的项目/资管过程日报指标异常值分析/结果/%s_%s.docx' % (name,today))

这篇关于资管过程日报指标异常分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117257

相关文章

javax.net.ssl.SSLHandshakeException:异常原因及解决方案

《javax.net.ssl.SSLHandshakeException:异常原因及解决方案》javax.net.ssl.SSLHandshakeException是一个SSL握手异常,通常在建立SS... 目录报错原因在程序中绕过服务器的安全验证注意点最后多说一句报错原因一般出现这种问题是因为目标服务器

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意