12.torchvision中的数据集使用

2024-08-29 06:12
文章标签 数据 使用 torchvision

本文主要是介绍12.torchvision中的数据集使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchvision中的数据集使用

需要学习知识:

  1. 如何把数据集(多张图片)和 transforms 结合在一起。

  2. 标准数据集如何下载、查看、使用。

进入pytorch官网,可以看到pytorch文档里分了不同的块,如下图,标出了常用的几个模块,后面几个不怎么常用

image-20240628005457194

pytorch网站地址:https://pytorch.org/vision/0.9/

各个模块作用

(1)torchvision.datasets

如:COCO 目标检测、语义分割;MNIST 手写文字;CIFAR 物体识别

(2)torchvision.io

输入输出模块,不常用

(3)torchvision.models

提供一些比较常见的神经网络,有的已经预训练好,比较重要,后面会使用到,如分类模型、语义分割模型、目标检测、视频分类等

(4)torchvision.ops

torchvision提供的一些比较少见的特殊的操作,基本不常用

(5)torchvision.transforms

之前讲解过

(6)torchvision.utils

提供一些常用的小工具,如TensorBoard

本节主要讲解torchvision.datasets,以及它如何跟transforms联合使用

image-20240628010622698

CIFAR10数据集

待会用来示例,它一般是用来进行物体识别的

image-20240628010911096

1.数据集如何下载

#如何使用torchvision提供的标准数据集
import torchvisiontrain_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True) #root使用相对路径,会在该.py所在位置创建一个叫dataset的文件夹,同时把数据保存进去。用Ctrl加P查看需要参数。
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)

image-20240704171527501

运行结果:

image-20240704171552730

数据集下载过慢时:

   获得下载链接后,把下载链接放到迅雷中,会首先下载压缩文件tar.gz,之后会对该压缩文件进行解压,里面会有相应的数据集。采用迅雷下载完毕后,在PyCharm里新建directory,名字也叫dataset,再将下载好的压缩包复制进去,download依然为True,运行后,会自动解压该数据

image-20240704171645191

CIFAR10在迅雷下载完解压到dataset文件夹里,得到cifar-10-batches-py

image-20240704172057685

2.数据集如何查看与使用

import torchvisiontrain_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,download=True)
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,download=True)print(test_set[0])  # 查看测试集中的第一个数据,是一个元组:(img, target)
print(test_set.classes)  # 列表,输出['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']img, target = test_set[0]
print(img) #输出<PIL.Image.Image image mode=RGB size=32x32 at 0x25D5FD20B38>
print(target)  # 输出:3。输出为列表第几个类别。从0开始数,这里类别为cat列表第四个
print(test_set.classes[target])  # cat
img.show()

image-20240704175708357

3.CIFAR10数据集 介绍

CIFAR10 数据集包含了6万张32×32像素的彩色图片,图片有10个类别,每个类别有6千张图像,其中有5万张图像为训练图片,1万张为测试图片。

image-20240704174937471

image-20240704174955200

如何把数据集(多张图片)和 transforms 结合在一起

CIFAR10数据集原始图片是PIL Image,如果要给pytorch使用,需要转为tensor数据类型(转成tensor后,就可以用tensorboard了)

transforms 更多地是用在 datasets 里 transform 的选项中

import torchvision
from torch.utils.tensorboard import SummaryWriter#把dataset_transform运用到数据集中的每一张图片,都转为tensor数据类型
dataset_transform = torchvision.transforms.Compose([torchvision.transforms.ToTensor()
])train_set=torchvision.datasets.CIFAR10(root="./dataset",train=True,transform=dataset_transform,download=True) #root使用相对路径,会在该.py所在位置创建一个叫dataset的文件夹,同时把数据保存进去
test_set=torchvision.datasets.CIFAR10(root="./dataset",train=False,transform=dataset_transform,download=True)# print(test_set[0])writer = SummaryWriter("p10")
#显示测试数据集中的前10张图片
for i in range(10):img,target = test_set[i]writer.add_image("test_set",img,i)  # img已经转成了tensor类型writer.close()

运行后在 terminal 里输入

tensorboard --logdir="p10"

可以看到tensorboard中显示了测试数据集中的前10张图片

image-20240704181231434
`

运行后在 terminal 里输入

tensorboard --logdir="p10"

可以看到tensorboard中显示了测试数据集中的前10张图片

[外链图片转存中…(img-3xIOAPLq-1724861342898)]

这篇关于12.torchvision中的数据集使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117068

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多