深度强化学习算法(五)(附带MATLAB程序)

2024-08-29 06:12

本文主要是介绍深度强化学习算法(五)(附带MATLAB程序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度强化学习(Deep Reinforcement Learning, DRL)结合了深度学习和强化学习的优点,能够处理具有高维状态和动作空间的复杂任务。它的核心思想是利用深度神经网络来逼近强化学习中的策略函数和价值函数,从而提高学习能力和决策效率。

一、关键算法分类

1.1 深度 Q 网络(Deep Q-Network, DQN)
  • 概念:将 Q 学习(一个值函数方法)与深度神经网络结合,用于近似 Q 值函数。
  • 特点:使用经验回放和固定 Q 目标网络来稳定训练过程。
  • 应用:成功应用于 Atari 游戏等环境。
 1.2 双重 Q 学习(Double Q-Learning)
  • 概念:解决 DQN 中 Q 值过估计的问题,通过引入两个 Q 网络来减少过估计。
  • 特点:使用两个独立的 Q 网络交替更新,以减少 Q 值的过高估计。
1.3 优先经验回放(Prioritized Experience Replay)
  • 概念:对经验回放进行优先级排序,以更频繁地训练那些“重要”的样本。
  • 特点:提高了训练的效率和稳定性。
1.4 深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)
  • 概念:适用于连续动作空间的策略梯度算法。
  • 特点:使用策略网络和价值网络来逼近策略和价值函数,并利用经验回放和目标网络来稳定训练。
1.5策略梯度方法(Policy Gradient Methods)
  • 概念:直接优化策略函数,通过梯度上升来最大化预期累积回报。
  • 特点:适合处理大规模或连续动作空间。
1.6近端策略优化(Proximal Policy Optimization, PPO)
  • 概念:通过引入一个“剪切”操作来限制每次策略更新的幅度,确保训练稳定。
  • 特点:简单且有效,广泛应用于各种任务。
1.7演员-评论家方法(Actor-Critic Methods)
  • 概念:结合了策略优化(演员)和价值函数(评论家)的方法。
  • 特点:演员负责更新策略,而评论家负责估计价值函数,用于指导演员更新策略。

二、策略梯度方法(Policy Gradient Methods)公式推导

策略梯度方法(Policy Gradient Methods)的核心在于优化策略函数,以最大化累积奖励。下面是策略梯度方法公式的详细推导过程。

2.1目标函数定义

我们首先定义一个目标函数 J\left ( \theta \right ),它表示在当前策略下的期望累计奖励。假设我们的目标是最大化从状态分布p\left ( s \right ) 中采样的累计奖励。目标函数可以表示为:J\left ( \theta \right )=IE _{\pi \theta}\left [ R \right ] 其中R 是累积奖励,\pi _{\theta }\left ( a|s \right )是给定参数\theta的策略函数

2.2期望累计奖励

为了更详细地推导,我们可以使用以下定义的累积奖励:

R_{t}=\sum _{k=t}^{T}\textrm{}\gamma ^{k-t}r_{k}

其中 r_{k}是在时间步k获得的奖励,\gamma是折扣因子。

 期望累计奖励可以表示为:

J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{} \gamma ^{t}r^{t}\right ]

2.3策略梯度定理

根据策略梯度定理,我们需要计算目标函数 J\left ( \theta \right )关于\theta的梯度。首先,对目标函数 J\left ( \theta \right )取梯度:

\bigtriangledown_{\theta } J\left ( \theta \right )=\bigtriangledown _{\theta }IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{} \gamma ^{t}r^{t}\right ]

2.4梯度的计算

利用期望的性质,我们可以将梯度移到期望外部:

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{} \gamma ^{t}r^{t}\right ]

梯度操作可以分开到每一项: 

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{}\bigtriangledown _{\theta } \gamma ^{t}r^{t}\right ]

我们利用策略导数定理,将奖励 rtr_trt​ 写作策略的函数:

\bigtriangledown _{\theta }r_{t}=\bigtriangledown _{\theta }\left ( log\pi_{\theta } \left ( a_{t}|s_{t} \right )\cdot \pi _{\theta }\left ( a_{t}|s_{t} \right )Q^{\pi }\left ( a_{t}|s_{t} \right )\right )

可以通过以下简化:

\bigtriangledown _{\theta }( log\pi_{\theta } \left ( a_{t}|s_{t} \right )=\frac{\bigtriangledown _{\theta }\pi_{\theta } \left ( a_{t}|s_{t} \right )}{\pi_{\theta } \left ( a_{t}|s_{t} \right )}

于是:

\bigtriangledown _{\theta } \pi _{\theta }\left ( a_{t}|s_{t} \right )Q^{\pi }\left ( a_{t}|s_{t} \right )=\bigtriangledown _{\theta } \pi _{\theta }\left ( a_{t}|s_{t} \right )Q^{\pi }\left ( a_{t}|s_{t} \right )+\pi _{\theta }\left ( a_{t}|s_{t} \right )\bigtriangledown _{\theta } Q^{\pi }\left ( a_{t}|s_{t} \right )

最终:

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{}\bigtriangledown _{\theta } \gamma ^{t}log\pi_{\theta } \left ( a_{t}|s_{t} \right )R_{t}\right ]

2.5使用基线减少方差

为了减少梯度估计的方差,我们可以引入基线 b\left ({s_{t}} \right )。引入基线的目标是使梯度估计更加稳定,而不改变期望值。引入基线后的梯度计算公式是:

\bigtriangledown_{\theta } J\left ( \theta \right )=IE_{\pi \theta }\left [ \sum _{t=0}^{T}\textrm{}\bigtriangledown _{\theta } \gamma ^{t}log\pi_{\theta } \left ( a_{t}|s_{t} \right )\left (R_{t}-b\left ( s_{t} \right ) \right )\right ]

基线b\left ( s_{t} \right ) 可以是状态值函数 V^{\pi }b\left ( s_{t} \right )或者其他合适的函数。

三、MATLAB仿真程序

下面是一个简单的 MATLAB 仿真程序示例,演示如何使用策略梯度方法(Policy Gradient Methods)来训练一个简单的强化学习智能体。这个例子中,我们将使用一个简单的迷宫环境和 REINFORCE 算法(一个基本的策略梯度方法)来优化策略。

3.1定义环境

首先,我们定义迷宫环境及其属性:

function [next_state, reward, done] = simple_maze_env(state, action)% 环境的网格尺寸grid_size = [5, 5];% 目标位置goal = [5, 5];% 移动move = [0, 0];if action == 1move = [-1, 0]; % 上elseif action == 2move = [1, 0]; % 下elseif action == 3move = [0, -1]; % 左elseif action == 4move = [0, 1]; % 右endnext_state = state + move;% 确保状态在环境范围内next_state = max(min(next_state, grid_size), [1, 1]);% 奖励和完成标志if isequal(next_state, goal)reward = 1;done = true;elsereward = -0.01; % 小的负奖励以鼓励较短路径done = false;end
end
3.2策略函数

接下来,我们定义一个简单的策略函数,使用神经网络来表示策略。这里使用的是一个简单的多层感知机(MLP):

function [pi] = policy_network(state, theta)% state: 当前状态% theta: 策略网络的参数% pi: 当前状态下的策略分布(动作的概率)% 状态维度num_states = 2; % 例如 [x, y]num_actions = 4; % 上、下、左、右% 简单的线性策略网络W = reshape(theta, [num_states, num_actions]);logits = W' * state';pi = softmax(logits);
endfunction y = softmax(x)e_x = exp(x - max(x));y = e_x / sum(e_x);
end
3.3REINFORCE 算法

实现 REINFORCE 算法来训练策略网络:

function [theta] = reinforce(env, num_episodes, alpha)% 参数设置num_states = 2;num_actions = 4;% 初始化策略参数theta = rand(num_states * num_actions, 1);% 主循环for episode = 1:num_episodesstate = [1, 1]; % 起始状态done = false;episode_rewards = [];episode_states = [];episode_actions = [];while ~donepi = policy_network(state, theta);action = randsample(1:num_actions, 1, true, pi);[next_state, reward, done] = simple_maze_env(state, action);episode_states = [episode_states; state];episode_actions = [episode_actions; action];episode_rewards = [episode_rewards; reward];state = next_state;end% 计算回报T = length(episode_rewards);returns = zeros(T, 1);G = 0;for t = T:-1:1G = episode_rewards(t) + G;returns(t) = G;end% 更新策略for t = 1:Tstate = episode_states(t, :);action = episode_actions(t);pi = policy_network(state, theta);grad = zeros(num_states * num_actions, 1);grad((action - 1) * num_states + 1:num_states * action) = state';grad = grad - pi' .* grad;theta = theta + alpha * grad * (returns(t) - pi(action));endend
end
3.4运行仿真
% 参数设置
num_episodes = 1000;
alpha = 0.01;% 训练策略
theta = reinforce(@simple_maze_env, num_episodes, alpha);% 输出结果
disp('训练完成!');
disp('最终策略参数:');
disp(theta);

代码解释

  • simple_maze_env:模拟迷宫环境的函数,接受当前状态和动作,返回下一个状态、奖励和完成标志。
  • policy_network:使用简单的策略网络来计算动作的概率分布。
  • reinforce:实现 REINFORCE 算法的函数,包括策略的采样、奖励计算、策略更新等步骤。

四、总结

策略梯度方法的推导过程涵盖了如何通过直接对策略函数进行优化来提高累积奖励。核心在于利用策略梯度定理,通过计算期望奖励函数的梯度来更新策略参数 θ\thetaθ。为了改进效果,通常会引入基线来降低梯度估计的方差。

  注意:回顾以往算法可以从以下链接进入:

1、深度 Q 网络(Deep Q-Network, DQN):

深度强化学习算法(一)(附带MATLAB程序)-CSDN博客

2、双重 Q 学习(Double Q-Learning):

深度强化学习算法(二)(附带MATLAB程序)-CSDN博客

3.优先经验回放(Prioritized Experience Replay):

深度强化学习算法(三)(附带MATLAB程序)-CSDN博客

4、深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)

深度强化学习算法(四)(附带MATLAB程序)-CSDN博客

这篇关于深度强化学习算法(五)(附带MATLAB程序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1117066

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Python程序打包exe,单文件和多文件方式

《Python程序打包exe,单文件和多文件方式》:本文主要介绍Python程序打包exe,单文件和多文件方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python 脚本打成exe文件安装Pyinstaller准备一个ico图标打包方式一(适用于文件较少的程

Python程序的文件头部声明小结

《Python程序的文件头部声明小结》在Python文件的顶部声明编码通常是必须的,尤其是在处理非ASCII字符时,下面就来介绍一下两种头部文件声明,具有一定的参考价值,感兴趣的可以了解一下... 目录一、# coding=utf-8二、#!/usr/bin/env python三、运行Python程序四、

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

SpringBoot后端实现小程序微信登录功能实现

《SpringBoot后端实现小程序微信登录功能实现》微信小程序登录是开发者通过微信提供的身份验证机制,获取用户唯一标识(openid)和会话密钥(session_key)的过程,这篇文章给大家介绍S... 目录SpringBoot实现微信小程序登录简介SpringBoot后端实现微信登录SpringBoo