助力外骨骼机器人动力学分析

2024-08-29 05:12

本文主要是介绍助力外骨骼机器人动力学分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、动力学分析

二、拉格朗日方程 

三、参考文献


一、动力学分析

        动力学是考虑引起运动所需要的力,使执行器作用的力矩或施加在操作臂上的外力使操作臂按照这个动力学方程运动。 

        目前机器人动力学分析中主要采用牛顿-欧拉动力学方程和拉格朗日动力学方程 [1]
两种方法的理念不同,其中,牛顿-欧拉公式被认为是一种力平衡方法,而拉格朗日公式则是一种基于能量的方法。

        本文主要是以拉格朗日方程进行动力学分析,其相应步骤如下:
1.1 人体基本参数[2]      

        人体基本参数包括:人体各关节质量、质心位置和转动惯量等,本文采用郑秀媛的CT测量法[3-4],获取中国成年人体下肢各关节相对质量分布及其质心位置。
 

图 1 人体下肢关节质心位置示意图[2] 

表 1 中国成年人体下肢关节相对质量及质心的相对位置[2]  

关节相对质量(%)相对位置(%)
男性女性男性女性
大腿28.3828.2045.344.2
小腿7.348.8639.342.5
2.962.4848.654.9

(1)、相对质量:通常指的是下肢关节(如髋关节、膝关节、踝关节等)的质量与整个身体质量的比例。
(2)、相对质心位置:指的是下肢关节质心相对于关节本身或者整个肢体的位置。质心位置的测量通常涉及将关节视为一个刚体系统,并确定其质量中心点。 

        转动惯量的测量方法有三线摆法和CT法

(1)、三线摆法原理

        三线摆法基于摆动的物理原理,通过测量物体在重力作用下的摆动周期来计算其转动惯量。这种方法适用于具有规则几何形状的刚体,特别是当这些物体可以围绕通过其质心的轴自由旋转时。

实验步骤

  1. 悬挂样品:将待测物体通过一根线悬挂,确保线不扭曲且垂直于水平面。
  2. 激发摆动:轻微推动物体使其绕悬挂轴摆动。
  3. 测量周期:记录物体完成多个完整摆动周期所需的时间。通常需要多次测量以提高准确性。
  4. 计算转动惯量:使用公式 I=I_{0}+m\cdot r^{2},其中 I_{0}是系统本身的转动惯量(可通过空载实验确定),m 是物体质量,r是悬挂点到质心的距离。

优点

  • 简单易行,不需要复杂的设备。

缺点

  • 受限于悬挂方式和物体形状,可能不适用于所有类型的物体。

(2)、计算转矩(CT)法原理

        CT法利用牛顿第二定律的旋转形式,即 \tau =I\cdot \alpha,其中\tau是转矩,I 是转动惯量,\alpha 是角加速度。通过测量施加的转矩和产生的角加速度,可以计算出转动惯量。

实验步骤

  1. 固定物体:将物体固定在能够测量转矩的设备上,例如扭矩台。
  2. 施加力:通过施加一个已知的力和力臂来产生转矩。
  3. 测量角加速度:使用传感器或高速摄像机等设备测量物体的角加速度。
  4. 计算转动惯量:根据测量的转矩和角加速度,使用上述公式计算转动惯量。

优点

  • 精度高,适用于复杂形状和不同材料的物体。
  • 可以在不同的环境和条件下进行。

缺点

  • 需要专业的设备和软件。
  • 实验设置较为复杂。

CT法确定的转动惯量回归方程式为:       

J_{i}=B_{0}+B_{1}X_{1}+B_{2}X_{2}

 其中:X_{1}表示体重(kg),X_{2}表示身高(cm),B_{0}B_{1}B_{2}表示回归方程系数,如下表所示:

 表 2 回归方程系数

关节关节惯性系数B_{0}B_{1}变量名X_{1}B_{2}变量名X_{2}
男性大腿J_{x}-3705.3774.284X_{1}28.621X_{2}
J_{y}-3664.8895.54928.078
J_{z}65.2707.165-1.461
小腿J_{x}-301.0442.9902.012
J_{y}-299.16429.302.009
J_{z}-17.7760.792-0.033
女性大腿J_{x}-1926.93425.37410.331
J_{y}-1622.26529.2007.321
J_{z}197.3639.548-3.177
小腿J_{x}-621.8853.5784.044
J_{y}-588.6093.8593.773
J_{z}-15.1660.7490.00

 其中:J_{x}表示绕额状轴的转动惯量(kg\cdot cm^{2})、J_{y}表示绕矢状轴的转动惯量(kg\cdot cm^{2})、J_{z}表示绕水平轴的转动惯量(kg\cdot cm^{2})。

图 2 额状面、矢状面和水平面示意图 

其中:额状轴(X)垂直于额状面,矢状轴(y)垂直于矢状面和水平轴(z)垂直于水平面。

二、拉格朗日方程 

2.1 拉格朗日方程
        具体描述见[5]
2.2 二连杆机器人动力学方程1
        将连杆质量集中于各连杆末端的点质量,这样连杆可以忽略转动动能,只考虑移动动能,详细内容如[6]
2.3 二连杆机器人动力学方程2[7-8]
        如果考虑连杆质心位置,此时需要就考虑转动动能和移动动能。

图 3 下肢二连杆结构 

连杆长L1和L2,质心位置d1和d2处。定义θ1和θ2为与竖直方向的夹角。

1、杆1的动能和势能

1.1、杆1的线速度
{x}_{1}=L_{1}sin(\Theta_{1} )          {y}_{1}=L_{1}cos(\Theta_{1} )
\dot{x}_{1}=L_{1}cos(\Theta_{1} )\dot{\Theta}_{1}     \dot{y}_{1}=-L_{1}sin(\Theta_{1} )\dot{\Theta}_{1}
v_{1}=\sqrt{\dot{x}_{1}^2+\dot{y}_{1}^2} 
1.2、杆1的动能
k_1=\frac{1}{2}m_1v_1^2+\frac{1}{2}I_1\dot{\Theta} _1^2
1.3、杆1的势能
u_1=m_1gy_1


2、杆2的动能和势能
2.1、杆2的线速度
{x}_{2}=L_{1}sin(\Theta_{1} )+L_{2}sin(\Theta_{2} )                 {y}_{2}=L_{1}cos(\Theta_{1} )+L_{2}cos(\Theta_{2} )
\dot{x}_{2}=L_{1}cos(\Theta_{1} )\dot{\Theta}_{1}+L_{2}cos(\Theta_{2})(\dot{​{\Theta}}_{2})   \dot{y}_{2}=-L_{1}sin(\Theta_{1} )\dot{\Theta}_{1}-L_{2}sin(\Theta_{2})(\dot{\Theta}_{2})
v_{2}=\sqrt{\dot{x}_{2}^2+\dot{y}_{2}^2}

2.2、杆2的动能

k_2=\frac{1}{2}m_2v_2^2+\frac{1}{2}I_2\dot{\Theta} _2^2
2.3、杆2的势能

u_2=m_2gy_2

3.动力学方程
L=K-U
L=k_1+k_2-u_1-u_2


三、参考文献

[1].机器人学导论(第四版)
[2].可穿载型助力机霖人技术研究.陈峰.中国科学技术大学
[3].建模与仿真,王红卫,北京科学出版社,2002
[4].数学模型,陈义华,重庆大学出版社,1995
[5].操作臂动力学的拉格朗日方程-CSDN博客
[6].【深入浅出】机器人动力学-拉格朗日方程实例_拉格朗日动力学方程-CSDN博客
[7].坐/卧式下肢康复机器人研究
[8].【Matlab 六自由度机器人】机器人动力学之推导拉格朗日方程(附MATLAB机器人动力学拉格朗日方程推导代码)_机械臂拉格朗日动力学-CSDN博客[9]. 

这篇关于助力外骨骼机器人动力学分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116937

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3