机器学习 之 DBSCAN算法 及实现

2024-08-29 01:52

本文主要是介绍机器学习 之 DBSCAN算法 及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.K-means 与 DBSCAN 的比较

K-means 和 DBSCAN 都是聚类算法,但它们之间有显著的区别:

  • K-means

    • 基于中心点的方法,要求用户提前指定簇的数量。
    • 适用于球形簇,且簇大小相近。
    • 无法处理噪声数据和任意形状的簇。
  • DBSCAN

    • 基于密度的方法,无需提前指定簇的数量。
    • 可以发现任意形状的簇,并能识别噪声点。
    • 适合处理含有噪声的数据集和不规则形状的簇。

以下图中的数据为例,相比K-means,DBSCAN更适合作为数据的聚类算法。

2.DBSCAN 算法原理

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 是一种基于密度的聚类算法,其核心概念是通过密度来定义簇。DBSCAN 定义了一个点为核心点(Core Point),如果这个点周围半径 eps 内至少有 min_samples 个邻近点。如果一个点周围没有足够的邻近点,则被视为边界点(Border Point)。此外,任何不属于核心点或边界点的点都被视为噪声点。

3.实验代码详解

实验数据

data.txt 文件包含了多种啤酒的相关信息,具体来说,每一行代表了一种啤酒,并记录了四个属性:

  1. 名称 (name): 啤酒的品牌名称。
  2. 卡路里 (calories): 每份啤酒的卡路里含量。
  3. 钠含量 (sodium): 每份啤酒的钠含量。
  4. 酒精度 (alcohol): 啤酒的酒精百分比。
  5. 成本 (cost): 啤酒的成本或价格。

导入库和数据

import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metrics# 读取文件
beer = pd.read_table("data.txt", sep=' ', encoding='utf8', engine='python')# 传入变量(列名)
X = beer[["calories", "sodium", "alcohol", "cost"]]

DBSCAN 聚类分析

db = DBSCAN(eps=20, min_samples=2).fit(X)
labels = db.labels_
解释:
  • 我们使用 DBSCAN 类进行聚类分析。
  • eps 参数定义了邻域的半径,即每个核心点周围必须有足够多的点才能成为核心点。
  • min_samples 参数定义了核心点周围必须有的最少邻近点数。
  • labels 是 DBSCAN 分配给每个样本的簇标签。标记 -1 表示该点被认为是噪声点。

添加结果至原始数据框

beer['cluster_db'] = labels
beer.sort_values('cluster_db')
解释:
  • 将 DBSCAN 的聚类结果添加到原始数据框 beer 中的新列 cluster_db
  • 使用 sort_values 方法按簇标签排序,这一步虽然不会改变数据框的内容(因为默认情况下它返回排序后的副本),但可以方便查看输出。

对聚类结果进行评分

score = metrics.silhouette_score(X, beer.cluster_db)
print(score)
解释:
  • 使用 metrics.silhouette_score 计算轮廓系数得分,该得分越高表示簇内的数据点越相似,簇间差异越大。
  • 输出得分以评估聚类的效果。

4.总结

通过上述步骤,我们完成了 DBSCAN 聚类分析的过程。与 K-means 相比,DBSCAN 具有以下优势:

  • 灵活性:DBSCAN 不需要预先知道簇的数量。
  • 噪声处理:DBSCAN 能够有效地识别和排除噪声点。
  • 任意形状簇:DBSCAN 能够发现任意形状的簇。

在本实验中,我们不仅实现了 DBSCAN 算法,还通过轮廓系数得分来评估聚类结果的质量。DBSCAN 的这些特性使其在处理复杂数据集时特别有用,尤其是在需要识别噪声和发现不规则簇形状的情况下。

这篇关于机器学习 之 DBSCAN算法 及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116503

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库