机器学习 之 DBSCAN算法 及实现

2024-08-29 01:52

本文主要是介绍机器学习 之 DBSCAN算法 及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.K-means 与 DBSCAN 的比较

K-means 和 DBSCAN 都是聚类算法,但它们之间有显著的区别:

  • K-means

    • 基于中心点的方法,要求用户提前指定簇的数量。
    • 适用于球形簇,且簇大小相近。
    • 无法处理噪声数据和任意形状的簇。
  • DBSCAN

    • 基于密度的方法,无需提前指定簇的数量。
    • 可以发现任意形状的簇,并能识别噪声点。
    • 适合处理含有噪声的数据集和不规则形状的簇。

以下图中的数据为例,相比K-means,DBSCAN更适合作为数据的聚类算法。

2.DBSCAN 算法原理

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) 是一种基于密度的聚类算法,其核心概念是通过密度来定义簇。DBSCAN 定义了一个点为核心点(Core Point),如果这个点周围半径 eps 内至少有 min_samples 个邻近点。如果一个点周围没有足够的邻近点,则被视为边界点(Border Point)。此外,任何不属于核心点或边界点的点都被视为噪声点。

3.实验代码详解

实验数据

data.txt 文件包含了多种啤酒的相关信息,具体来说,每一行代表了一种啤酒,并记录了四个属性:

  1. 名称 (name): 啤酒的品牌名称。
  2. 卡路里 (calories): 每份啤酒的卡路里含量。
  3. 钠含量 (sodium): 每份啤酒的钠含量。
  4. 酒精度 (alcohol): 啤酒的酒精百分比。
  5. 成本 (cost): 啤酒的成本或价格。

导入库和数据

import pandas as pd
from sklearn.cluster import DBSCAN
from sklearn import metrics# 读取文件
beer = pd.read_table("data.txt", sep=' ', encoding='utf8', engine='python')# 传入变量(列名)
X = beer[["calories", "sodium", "alcohol", "cost"]]

DBSCAN 聚类分析

db = DBSCAN(eps=20, min_samples=2).fit(X)
labels = db.labels_
解释:
  • 我们使用 DBSCAN 类进行聚类分析。
  • eps 参数定义了邻域的半径,即每个核心点周围必须有足够多的点才能成为核心点。
  • min_samples 参数定义了核心点周围必须有的最少邻近点数。
  • labels 是 DBSCAN 分配给每个样本的簇标签。标记 -1 表示该点被认为是噪声点。

添加结果至原始数据框

beer['cluster_db'] = labels
beer.sort_values('cluster_db')
解释:
  • 将 DBSCAN 的聚类结果添加到原始数据框 beer 中的新列 cluster_db
  • 使用 sort_values 方法按簇标签排序,这一步虽然不会改变数据框的内容(因为默认情况下它返回排序后的副本),但可以方便查看输出。

对聚类结果进行评分

score = metrics.silhouette_score(X, beer.cluster_db)
print(score)
解释:
  • 使用 metrics.silhouette_score 计算轮廓系数得分,该得分越高表示簇内的数据点越相似,簇间差异越大。
  • 输出得分以评估聚类的效果。

4.总结

通过上述步骤,我们完成了 DBSCAN 聚类分析的过程。与 K-means 相比,DBSCAN 具有以下优势:

  • 灵活性:DBSCAN 不需要预先知道簇的数量。
  • 噪声处理:DBSCAN 能够有效地识别和排除噪声点。
  • 任意形状簇:DBSCAN 能够发现任意形状的簇。

在本实验中,我们不仅实现了 DBSCAN 算法,还通过轮廓系数得分来评估聚类结果的质量。DBSCAN 的这些特性使其在处理复杂数据集时特别有用,尤其是在需要识别噪声和发现不规则簇形状的情况下。

这篇关于机器学习 之 DBSCAN算法 及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116503

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符