BloomFilter原理和使用

2024-08-28 22:58
文章标签 使用 原理 bloomfilter

本文主要是介绍BloomFilter原理和使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • BloomFilter原理和使用
    • BloomFilter原理
      • 适用场景
      • 基础性质
      • False-Positive推导
    • Bloom Filter之python包
      • pybloomfilter
    • pybloomfilter代码实例

BloomFilter原理和使用

BloomFilter原理

适用场景

在很多场景下,会遇到流式元素的处理,最主要的是集合判断与去重问题。例如我们会判断一个email地址是否在黑名单中,网络爬虫会判断一个url是否已经存在于待抓取列表或者已抓取,视频库的去重等等。不幸的是通常情况下这类问题面临的数据规模都较大,比如网络爬虫系统的抓取url通常达到数亿级别,如果采用哈希表存储这些url将会耗费大量的内存以至于在实际生产使用过程中几乎不可用,而布隆滤波器确实一种近乎完美的替代方案。(谨记:大部分的近似方案虽然会带来少量的损失,但是会给性能和效果带来极大的提升)

在个人研究方面,有一个场景需要对item进行流式处理,最主要的操作便是查询是否已经存在,由于需要查询的信息量较大,且需要在分布式场景下进行全局状态维护,为了降低分布式维护信息的量,减少通信代价,故希望采用bloom filter期待有所作用。

本实验目前采用最基础的bloom filter的形式,暂不深入研究bloom filter各种拓展形式。

基础性质

布隆过滤器(Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的。它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中。

文章:Space/Time Trade-offs in Hash Coding with Allowable Errors

布隆滤波器会有一个m位的bit数组(每位初始设为0)以及k个随机哈希函数,每个哈希函数的输出都是一个(0,m-1)之间的一个数(对应bit数组下标)。

添加操作:输入x,对于每一个哈希函数,计算j= hash(x),将m_bit[j] 设成1;

查询操作:输入x,对于每一个哈希函数,计算j= hash(x),如果m_bit[j] 不等于1,则说明x不在集合中,否则如果k个函数的映射位都为1,说明x存在于集合中。

优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter判断某一元素存在于某集合中,但是实际上该元素并不在集合中)和删除困难,但是没有识别错误的情形(即假反例Falsenegatives,如果某个元素确实没有在该集合中,那么Bloom Filter 是不会报告该元素存在于集合中的,所以不会漏报)。

False-Positive推导

假设k个哈希函数完全随机,即以等概率选在(0,m-1)中的一个数,那么m_bit中某一位在添加元素时一次哈希没有被置位的概率是:

在这里插入图片描述

经过k次哈希没有被置位的概率是:

在这里插入图片描述

添加n个元素该位仍然没有被置位的概率是:

在这里插入图片描述

那么该位在添加n个元素后被置位的概率是:

在这里插入图片描述

现在对于一个新元素,要判断其是否在集合中,如果判断该元素存在于集合中,说明k个哈希位都为1,但是有可能会错误的把实际不存在于集合中判断为存在于集合中(False Positive),该事件发生的概率为:

在这里插入图片描述

可以看出随着m(位数组大小)的增加,False Positive概率会下降,同时随着插入元素个数 n 的增加,False Positives的概率又会上升。

对于给定的m、n,哈希函数的个数k的最优值为:

在这里插入图片描述

在这里插入图片描述

对于给定的False Positives概率 p和元素个数n,位数组m的最优值为:

在这里插入图片描述

Bloom Filter之python包

  • pybloom
  • pybloom_live
  • pybloomfilter

这里仅介绍pybloomfilter的安装与使用

pybloomfilter

Pybloomfilter是一个用java实现的bloomfilter版本,为了兼顾效率,内部位数组使用C实现。

Pybloomfilter构造时允许传入capacity(即n),error rate,位数组大小(m),哈希函数个数(即k)以及一个序列化的nmap文件。

官方文档:http://axiak.github.io/pybloomfiltermmap/ (需要开全局代理,否则可能被墙)

下载地址:https://github.com/axiak/pybloomfiltermmap

在ubuntu中可以直接使用命令安装:sudo pip install pybloomfiltermmap

在安装过程中出现如下问题(不管是下载后编译安装还是直接使用命令安装):

在这里插入图片描述

发扬曾经学到优良传统,遇到错误首先应该分析出错返回的结果,然后根据理解再去找问题。

这里发现是编译的时候有相关的c库找不到,于是开始谷歌:

真正解决问题的博客:https://blog.csdn.net/yingyujianmo/article/details/49634511

在ubuntu上安装软件时,经常出现这样的问题:

/usr/bin/ld: cannot find -l****

问题解决办法,详细内容参考上述博客。

另外还有一种常见解决方案,为给出博文的第一种,不过此处并没有解决问题:http://blog.51cto.com/eminzhang/1285705

核心问题在于该库是存在的,但是名称有所变化,需要增加一个软链接:

具体操作:

首先定位问题,使用命令:locate libcrypto查看,发现 libcrypto.so.XXX 是存在的,但是libcrypto.so是不存在。

在这里插入图片描述

因此进入对应的文件夹,建立对应的软链接:

w@ubuntu:/lib/x86_64-linux-gnu$ sudo ln -s libcrypto.so.1.0.0 libcrypto.so

问题解决

类似的/usr/bin/ld: cannot find -l****问题都可以通过这种方法解决。

进而使用命令编译安装pybloomfilter

w@ubuntu:~/Desktop/pybloomfiltermmap-master$ sudo python setup.py install

成功!

另外,使用如下命令安装pybloomfilter,安装貌似没有问题,但是无法使用,会出现错误:

pip install pybloomfilter

运行时出现错误:

在这里插入图片描述

应该是缺少了某C语言相关的包,之后尝试pybloom包,可以运行,API接口和pybloomfilter不太一样,速度上估计也慢一些,似乎还有一些不准确,这里主要使用pybloomfilter

pybloomfilter代码实例

#! /usr/bin/env python
# -*- coding:utf-8 -*-import os
import sys
reload(sys)
sys.setdefaultencoding('utf-8')import randomfrom pybloomfilter import BloomFilter# 创建一个capacity等于100万,error rate等于0.001的bloomfilter对象
bfilter = BloomFilter(1000000,0.001,'bf_test.bloom')# 添加100个元素
for x in xrange(1000000):bfilter.add(str(x))# 与nmap文件同步
bfilter.sync()# 测试error rate
error_in = 0
for x in xrange(2000000):if str(x) in bfilter and x > 1000000:error_in += 1print "error_rate:%s" % (error_in*1.0/1000000)

输出结果为:

在这里插入图片描述

与0.001的既设值很接近,还是非常精确且值得信赖的。

关于API还需要进一步学习总结,以及在图划分的实际测试结果,见后续博客。

这篇关于BloomFilter原理和使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116126

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3