检测入栈出栈顺序是否正确的算法解析

2024-08-28 22:20

本文主要是介绍检测入栈出栈顺序是否正确的算法解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

检测入栈出栈顺序是否正确的算法解析

在计算机科学中,栈(Stack)是一种常见的数据结构,遵循后进先出(LIFO)的原则。在某些应用场景中,我们需要验证给定的入栈和出栈顺序是否合法。本文将详细解析一个用于判断入栈出栈顺序是否正确的算法。

问题描述

给定两个数组 ab,分别表示入栈顺序和出栈顺序。我们需要判断是否可以通过一系列的入栈和出栈操作,使得最终的出栈顺序与数组 b 一致。

算法实现

以下是一个用C语言实现的算法,用于判断入栈出栈顺序是否正确:

#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>typedef int TYPE;typedef struct {TYPE* data;int top;int capacity;
} ArrayStack;ArrayStack* create_Array_Stack(int capacity) {ArrayStack* stack = (ArrayStack*)malloc(sizeof(ArrayStack));stack->data = (TYPE*)malloc(capacity * sizeof(TYPE));stack->top = -1;stack->capacity = capacity;return stack;
}void push_array_stack(ArrayStack* stack, TYPE value) {if (stack->top < stack->capacity - 1) {stack->data[++stack->top] = value;}
}bool pop_array_stack(ArrayStack* stack) {if (stack->top >= 0) {stack->top--;return true;}return false;
}bool top_array_stack(ArrayStack* stack, TYPE* value) {if (stack->top >= 0) {*value = stack->data[stack->top];return true;}return false;
}void destory_array_stack(ArrayStack* stack) {free(stack->data);free(stack);
}bool is_pop_stack(int a[], int b[], int len) {ArrayStack* stack = create_Array_Stack(len);if (stack == NULL) {printf("创建栈失败\n");return false;}int a_index = 0;int b_index = 0;while (b_index < len) {TYPE val;if (top_array_stack(stack, &val) && val == b[b_index]) {pop_array_stack(stack);b_index++;} else {if (a_index >= len) {destory_array_stack(stack);printf("无法匹配出栈序列\n");return false; // 无法匹配出栈序列}push_array_stack(stack, a[a_index]);a_index++;}}destory_array_stack(stack);printf("匹配成功\n");return true;
}int main() {int a[] = {1, 2, 3, 4, 5};int b[] = {4, 5, 3, 2, 1};int len = sizeof(a) / sizeof(a[0]);if (is_pop_stack(a, b, len)) {printf("入栈出栈顺序正确\n");} else {printf("入栈出栈顺序不正确\n");}return 0;
}

算法解析

1. 创建栈

首先,我们定义了一个 ArrayStack 结构体来表示栈,并实现了创建栈的函数 create_Array_Stack

ArrayStack* create_Array_Stack(int capacity) {ArrayStack* stack = (ArrayStack*)malloc(sizeof(ArrayStack));stack->data = (TYPE*)malloc(capacity * sizeof(TYPE));stack->top = -1;stack->capacity = capacity;return stack;
}

2. 入栈和出栈操作

我们实现了入栈 push_array_stack 和出栈 pop_array_stack 函数,以及获取栈顶元素 top_array_stack 的函数。

void push_array_stack(ArrayStack* stack, TYPE value) {if (stack->top < stack->capacity - 1) {stack->data[++stack->top] = value;}
}bool pop_array_stack(ArrayStack* stack) {if (stack->top >= 0) {stack->top--;return true;}return false;
}bool top_array_stack(ArrayStack* stack, TYPE* value) {if (stack->top >= 0) {*value = stack->data[stack->top];return true;}return false;
}

3. 判断入栈出栈顺序

核心函数 is_pop_stack 用于判断给定的入栈和出栈顺序是否合法。

bool is_pop_stack(int a[], int b[], int len) {ArrayStack* stack = create_Array_Stack(len);if (stack == NULL) {printf("创建栈失败\n");return false;}int a_index = 0;int b_index = 0;while (b_index < len) {TYPE val;if (top_array_stack(stack, &val) && val == b[b_index]) {pop_array_stack(stack);b_index++;} else {if (a_index >= len) {destory_array_stack(stack);printf("无法匹配出栈序列\n");return false; // 无法匹配出栈序列}push_array_stack(stack, a[a_index]);a_index++;}}destory_array_stack(stack);printf("匹配成功\n");return true;
}

4. 主函数

在主函数中,我们定义了入栈顺序 a 和出栈顺序 b,并调用 is_pop_stack 函数进行判断。

int main() {int a[] = {1, 2, 3, 4, 5};int b[] = {4, 5, 3, 2, 1};int len = sizeof(a) / sizeof(a[0]);if (is_pop_stack(a, b, len)) {printf("入栈出栈顺序正确\n");} else {printf("入栈出栈顺序不正确\n");}return 0;}

总结

通过上述算法,我们可以有效地判断给定的入栈和出栈顺序是否合法。该算法通过模拟栈的操作,验证了给定的入栈和出栈顺序是否能够匹配。

这篇关于检测入栈出栈顺序是否正确的算法解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1116046

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring Bean初始化及@PostConstruc执行顺序示例详解

《SpringBean初始化及@PostConstruc执行顺序示例详解》本文给大家介绍SpringBean初始化及@PostConstruc执行顺序,本文通过实例代码给大家介绍的非常详细,对大家的... 目录1. Bean初始化执行顺序2. 成员变量初始化顺序2.1 普通Java类(非Spring环境)(

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima