算法-容斥原理

2024-08-28 21:36
文章标签 算法 原理 容斥

本文主要是介绍算法-容斥原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 venn图:

如何求三个圆圈的面积之和?

\left |A\bigcup_{}^{} B\bigcup C \right | = \left | A \right | + \left | B \right |+\left | C\right | - \left | A\bigcap B \right |- \left | A\bigcap C \right | - \left | B\bigcap C\right |+\left | A\bigcap B\bigcap C \right |

此时,||不代表绝对值,代表集合的个数 

解题思路:

实际上,我们不需要知道每个集合中的元素具体是什么,只需要知道每个集合的大小

例如 |S1|=10\, /\, 2=5,表示10以内能够被2整除的数有5个,每个集合的大小可以根据n\, /\, p来确定。

那么pi\bigcap pj的集合大小怎么算呢,其实就是n\, /\, (pi\, * \, pj)

最后就是如何用代码表示每个集合状态(选或者没有选)?

在这里使用二进制,以 m = 4为例,需要四个二进制位来表示4个集合选中与不选的状态

1101这里表示选中集合S1,S2,S4,故这个集合中元素的个数为 n\, /\, (p1\**p2\**p4)

观察公式不难得出选中集合的个数决定了是正或负,奇数为正,偶数为负

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int N = 20;
int n,m;
int p[N];
int main() {ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);cin >> n >> m;for(int i = 0; i < m; i++) cin >> p[i];int res = 0;//把i看成m位的二进制// 举所有可能的子集for(int i = 1; i < 1 << m; i++){int t = 1;//乘积作为分母,求该集合元素的个数int s = 0; //选中集合的个数for(int j = 0; j < m; j++){//第j个集合为1,表示选中if(i >> j & 1){if((ll) t * p[j] > n){t = -1;break;}s++;t *= p[j];}}if(t == -1) continue;// 跳过if(s & 1) res += n / t;else res -= n / t;}cout << res <<'\n';return 0;
}

1. 外层循环的作用

外层循环 for(int i = 1; i < 1 << m; i++) 的目的是枚举所有可能的子集。在代码中,m 表示输入的 p 数组中的元素个数,也就是子集的元素个数。

1 << m2^m,代表有 m 个元素的集合所能产生的所有子集的数量。例如,如果 m = 3,那么 1 << m 的值就是 2^3 = 8,也就是 {000, 001, 010, 011, 100, 101, 110, 111},这8种情况分别代表不同的子集。

2.外层循环的过程

一个长度为 m 的数组 p,我们要枚举所有 p 的子集。可以把 m 个元素的数组 p 的每一个子集看作一个长度为 m 的二进制数。这个二进制数中的每一位(0 或 1)表示对应位置的元素是否在子集中:

  • 如果第 j 位是 1,表示 p[j] 这个元素在子集中。
  • 如果第 j 位是 0,表示 p[j] 这个元素不在子集中。

举个例子

假设 p = [2, 3, 5],也就是 m = 3

对于每一个子集,我们可以用一个 3 位的二进制数来表示:

  • i = 0 (000): 空集 {}
  • i = 1 (001): 子集 {5}
  • i = 2 (010): 子集 {3}
  • i = 3 (011): 子集 {3, 5}
  • i = 4 (100): 子集 {2}
  • i = 5 (101): 子集 {2, 5}
  • i = 6 (110): 子集 {2, 3}
  • i = 7 (111): 子集 {2, 3, 5}

在二进制中,第 i 位为 1 表示选中了数组 p 中的第 i 个元素。

3.演示代码过程

输入和初始化

输入的 n = 10m = 2,集合 p = {2, 3}。程序初始化 res = 0

枚举子集

代码中的外层循环 for(int i = 1; i < 1 << m; i++) 会枚举所有的非空子集:

  • i = 1 对应二进制 01,表示子集 {2}
  • i = 2 对应二进制 10,表示子集 {3}
  • i = 3 对应二进制 11,表示子集 {2, 3}
子集计算过程
  1. 子集 {2} (i = 1, 二进制 01)
    • s = 1(因为选中了1个元素)
    • t = 2(当前子集的乘积为2)
    • 计算 10 / 2 = 5110 中能被 2 整除的数有 5 个)。
    • 因为 s 是奇数,所以 res += 5,当前 res = 5
  2. 子集 {3} (i = 2, 二进制 10)
    • s = 1(因为选中了1个元素)
    • t = 3(当前子集的乘积为3)
    • 计算 10 / 3 = 3110 中能被 3 整除的数有 3 个)。
    • 因为 s 是奇数,所以 res += 3,当前 res = 8
  3. 子集 {2, 3} (i = 3, 二进制 11)
    • s = 2(因为选中了2个元素)
    • t = 623 的乘积为6)
    • 计算 10 / 6 = 1110 中能被 6 整除的数有 1 个)。
    • 因为 s 是偶数,所以 res -= 1,当前 res = 7
最终结果

最终,程序输出 res = 7。这意味着在 110 之间,有 7 个数能被 23 整除。

这些数分别是:2, 3, 4, 6, 8, 9, 10

这篇关于算法-容斥原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115951

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、