原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!

本文主要是介绍原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

随着光伏、风电等分布式电源的发展,配电网的供电模式得以改变,解决了传统火力发电带来的能源匮乏及环境污染问题,但其发电的随机性及波动性对配电网的稳定运行造成一定影响。以多个微电网组成的微电网群可有效消纳分布式电源,提高供电灵活性及可靠性,减少弃光、弃风率,降低经济成本。因此,构建微电网优化调度模型已成为微电网综合控制的核心问题之一,对减少微电网系统运行成本及环境污染具有重要意义。

微电网群系统结构

微电网群由3个独立的微电网(microgrid,MG)组成,各微电网内部包含光伏(photovoltaic,PV)、风力发电机(wind turbine,WT)、电动汽车(electric vehicle,EV)、微型燃气轮机(microturbine,MT)、储能电池(battery,BT)及负荷,通过能量管理中心实现彼此之间电能交互及向配电网买卖电,如下图所示。

目标函数

考虑微电网群系统运行成本及环境成本,构建微电网群经济优化调度模型,其中运行成本包括可控分布式发电单元的发电成本、设备运行维护成本、BT运行成本、电能交易成本;环境成本为CO2、SO2、NOx污染物气体的排放惩罚成本,以微电网群系统总运行成本为目标函数进行优化调度。

秃鹰搜索算法

BES是一种针对秃鹰狩猎行为提出的自然启发式算法(仿生算法),包含选择搜索空间、搜索猎物及俯冲3个阶段。

选择搜索空间阶段:该阶段秃鹰根据猎物数量随机选择搜索区域,飞到当前最优个体附近。

搜索猎物阶段:该阶段秃鹰在选定的搜索空间内螺旋飞行,加速搜索猎物。

俯冲阶段:该阶段秃鹰从当前最优位置以螺旋飞行的方式冲向猎物。

算法步骤

程序介绍

本程序构建以3个单微电网组成的微电网群优化调度模型,综合考虑系统总运行成本及环境成本,采用改进秃鹰算法(improved bald eagle search algorithm,IBES)进行求解,通过融合反向学习和柯西变异策略来提高秃鹰算法(bald eagle search algorithm,BES)的寻优精度,最终通过与其他算法对模型进行求解,验证改进后算法的优越性。程序中算例丰富,注释清晰,干货满满,创新性和可扩展性很高,足以撑起一篇高水平论文!下面对程序做简要介绍!

程序适用平台:Matlab+Yalmip+Cplex

参考文献:《基于改进秃鹰算法的微电网群经济优化调度研究》-太阳能学报

程序结果

部分程序

%% 设置种群参数
parameters;
sizepop = 40;                       % 初始种群个数
dim = 288;                          % 空间维数
ger = 500;                          % 最大迭代次数   
[x_max, x_min] = set_pop(dim);      % 位置上下限
a = 2;                              % 位置变化参数
a1 = 10;                            % 搜索点之间角的参数
R = 1.5;                            % 搜索周期数
c1 = 1.8;                           % 增加秃鹰移动强度的随机数
c2 = 1.8;                           % 增加秃鹰移动强度的随机数
[x,y] = polr(a,R,sizepop);          % 搜索猎物阶段的参数    
[x1,y1] = swoo_p(a,R,sizepop);      % 俯冲阶段的参数
%% 种群初始化
pop = x_min + rand(sizepop,dim).*(x_max - x_min);   % 初始化种群  
pop_best = pop(1,:);                                % 初始化群体最优位置
fitness = zeros(1,sizepop);                         % 所有个体的适应度
fitness_best = inf;                                 % 初始化群体最优适应度
%% 初始的适应度% 计算适应度值
​fitness(k) = objective_fun(pop(k,:));
​​fitness_best = fitness(k);
​pop_best = pop(k,:);
history_IBES = zeros(1,ger);  % IBES历史最优适应度值
%% 迭代求最优解
% 1.选择搜索空间阶段
pop_new = pop_best + 2*rand(1,dim).*(mean(pop) - pop(k,:));
fitness_new = objective_fun(pop_new);
% 2.搜索猎物阶段
pop_new = pop(k,:) + y(k)*(pop(k,:) - pop(k + 1,:)) + x(k)*(pop(k,:) - mean(pop));fitness_new = objective_fun(pop_new);
​% 3.俯冲阶段
​pop_new = rand(1,dim).*pop_best + x(k)*(pop(k,:) - c1*mean(pop)) + y(k)*(pop(k,:) - c2*pop_best);
​fitness_new = objective_fun(pop_new);
% 4.融合反向学习和柯西变异策略​
​pop1 = x_max + rand(1,dim).*(x_min - pop(k,:));
​L = ((ger - iter)/ger)^iter;
pop_new = pop1 + L*(pop(k,:) - pop1);

部分内容源自网络,侵权联系删除!

欢迎感兴趣的小伙伴关注并私信获取完整版代码,小编会不定期更新高质量的学习资料、文章和程序代码,为您的科研加油助力!

这篇关于原创~尚未发表!基于改进秃鹰算法的多区域微网经济优化调度程序代码!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115792

相关文章

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

MySQL中优化CPU使用的详细指南

《MySQL中优化CPU使用的详细指南》优化MySQL的CPU使用可以显著提高数据库的性能和响应时间,本文为大家整理了一些优化CPU使用的方法,大家可以根据需要进行选择... 目录一、优化查询和索引1.1 优化查询语句1.2 创建和优化索引1.3 避免全表扫描二、调整mysql配置参数2.1 调整线程数2.

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Java中的xxl-job调度器线程池工作机制

《Java中的xxl-job调度器线程池工作机制》xxl-job通过快慢线程池分离短时与长时任务,动态降级超时任务至慢池,结合异步触发和资源隔离机制,提升高频调度的性能与稳定性,支撑高并发场景下的可靠... 目录⚙️ 一、调度器线程池的核心设计 二、线程池的工作流程 三、线程池配置参数与优化 四、总结:线程