C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析

本文主要是介绍C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在之前的博文中我们着重分析了convolutional_layer类的代码结构,在这篇博文中分析对应的下采样层average_pooling_layer类:

  一、下采样层的作用

  下采样层的作用理论上来说由两个,主要是降维,其次是提高一点特征的鲁棒性。在LeNet-5模型中,每一个卷积层后面都跟着一个下采样层:

  原因就是当图像在经过卷积层之后,由于每个卷积层都有多个卷积模板,直接导致卷积结果输出的特征矩阵相对于输入的数据矩阵其维数要提高数倍,再加上存在若干卷积层(谷歌的某些模型甚至超过100层),若不进行降维操作,最后的特征维数可想而知,因此在这里下采样层就充当了一个特征降维的角色。比如这里用的是2*2模板均值下采样,说白了就是四个相邻像素经过加权计算变成一个,维数变为原来的四分之一,降维性能显而易见。至于鲁棒性问题,理论上只要是合理的降维手段,对鲁棒性都会有一定的提升(当然这是我的个人观点)。

  二、average_pooling_layer类结构

  average_pooling_layer类同样继承自基类partial_connected_layer,和前文中所说的convolutional_layer类算是相同继承层次,因此与convolutional_layer类在结构上也非常相似,但下采样层由于其功能相对单一,因此在结构上比convolutional_layer类要简洁不少

  2.1 成员变量

  average_pooling_layer类的成员变量一共有两个,分别保存输入数据矩阵的属性和下采样后输出特征矩阵的属性:

  至于有关layer_size_t、index3d等类型的相关知识在上一篇博客中已经进行了详细介绍,这里不再赘述。

  2.2 构造函数

  average_pooling_layer类的构造函数十分简洁,基本上就是调用了基类partial_connected_layer的构造函数,然后在完成自己类中两个成员变量的初始化而已:

  这里稍稍介绍一下pooling_size_mismatch()函数。这是一个定义在基类layer中的函数,作用就是抛出尺寸异常的信息,而在每一层中对尺寸匹配的检验标准都不同,因此各个子类在调用这个函数给出异常信息时,需要依据对应层的标准来进行判断,比如在下采样层,我们认为如果输入数据矩阵的尺寸不是下采样窗口的整数倍时,则无法正常进行分块降维,即视为尺寸不匹配,抛出尺寸异常信息:

  2.3 其他函数

  除了构造函数,下采样层还提供了一些其他函数,包括下采样矩阵权重初始化函数和偏置初始化函数(在下采样的过程中同样需要加上偏置)init_connection(),权重矩阵设置函数connect_kernel(),以及输出特征矩阵图像化的转换函数output_to_image(),以上这些函数与前一篇博文中convolutional_layer类中的对应的函数功能可以说是完全相同(毕竟都是继承与同一个基类),这里不再赘述。

  三、注意事项

  1、下采样层后的激活函数

  在实际的卷积神经网络模型中,对卷积特征输出进行下采样之后,紧接着应该送入激活函数中,换句话说下采样层和激活函数应该是紧密相关的。不过在这里作者并没有将激活函数直接放在average_pooling_layer类中,而是将每个激活函数都封装成对应的类,并放到activation命名空间下:

  2、LeNet-5模型的经典性

  这里在介绍卷积伸神经网络模型时一直沿用LeNet-5模型,主要是因为它既结构简单又堪称CNN的经典之作,但在实际应用中卷积神经网络的层数可不止这些,举个例子,2014年的VGG模型已经将网络扩展到16层的深度,至于各大深度学习研究院内部已经将网络加深到多少层这个已经不得而知,总之一两块泰坦级别的N卡是不够用的。



如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。


这篇关于C++卷积神经网络实例:tiny_cnn代码详解(6)——average_pooling_layer层结构类分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115499

相关文章

SpringBoot整合mybatisPlus实现批量插入并获取ID详解

《SpringBoot整合mybatisPlus实现批量插入并获取ID详解》这篇文章主要为大家详细介绍了SpringBoot如何整合mybatisPlus实现批量插入并获取ID,文中的示例代码讲解详细... 目录【1】saveBATch(一万条数据总耗时:2478ms)【2】集合方式foreach(一万条数

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

MySQL 中的 JSON 查询案例详解

《MySQL中的JSON查询案例详解》:本文主要介绍MySQL的JSON查询的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql 的 jsON 路径格式基本结构路径组件详解特殊语法元素实际示例简单路径复杂路径简写操作符注意MySQL 的 J

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核