Java中泛型的介绍与简单使用

2024-08-28 16:08
文章标签 java 简单 使用 介绍 中泛

本文主要是介绍Java中泛型的介绍与简单使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习目标

掌握泛型的产生意义。
掌握泛型的基本使用。
了解泛型的警告信息及泛型的擦除。

泛型是在JDK1.5之后增加的内容,泛型(Generic)

使用泛型的原因


题目分析:
首先要考虑到,必须建立一好一个表示坐标点的类——Point,此类中有两个属性分别用来表示x坐标和y坐标,但是x和y中所保存的整数类型会有三种(int、float、String),而要想使用一个类型可以同时接收这样的三种类型数据,现在只能使用Object,因为Object类可以接收任何类型的数据,都会自动发生向上转型操作,这样三种数据类型安装以下的方式进行转换:
数字(int) —> 自动装箱成Interger —> 向上转型使用Object接收
小数(float)—> 自动装箱成Float —> 向上转型使用Object接收
字符串(String)—>向上转型使用Object接收

设计Point类
class Point{private Object x ;		// 表示X坐标private Object y ;		// 表示Y坐标public void setX(Object x){this.x = x ;}public void setY(Object y){this.y = y ;}public Object getX(){return this.x ;}public Object getY(){return this.y ;}
};public class GenericsDemo01{public static void main(String args[]){Point p = new Point() ;	// 声明一个Point的对象p.setX(10) ;		// 利用自动装箱操作:int --> Integer --> Objectp.setY(20) ;		// 利用自动装箱操作:int --> Integer --> Objectint x = (Integer)p.getX() ;	// 取出数据先变为Integer,之后自动拆箱int y = (Integer)p.getY() ;	// 取出数据先变为Integer,之后自动拆箱System.out.println("整数表示,X坐标为:" + x) ;System.out.println("整数表示,Y坐标为:" + y) ;}
};

小数表示
class Point{private Object x ;		// 表示X坐标private Object y ;		// 表示Y坐标public void setX(Object x){this.x = x ;}public void setY(Object y){this.y = y ;}public Object getX(){return this.x ;}public Object getY(){return this.y ;}
};public class GenericsDemo02{public static void main(String args[]){Point p = new Point() ;	// 声明一个Point的对象p.setX(10.5f) ;		// 利用自动装箱操作:float --> Float --> Objectp.setY(20.6f) ;		// 利用自动装箱操作:float --> Float --> Objectfloat x = (Float)p.getX() ;	// 取出数据先变为Float,之后自动拆箱float y = (Float)p.getY() ;	// 取出数据先变为Float,之后自动拆箱System.out.println("小数表示,X坐标为:" + x) ;System.out.println("小数表示,Y坐标为:" + y) ;}
};


字符串表示:
class Point{private Object x ;		// 表示X坐标private Object y ;		// 表示Y坐标public void setX(Object x){this.x = x ;}public void setY(Object y){this.y = y ;}public Object getX(){return this.x ;}public Object getY(){return this.y ;}
};public class GenericsDemo03{public static void main(String args[]){Point p = new Point() ;	// 声明一个Point的对象p.setX("东经180度") ;		// String --> Objectp.setY("北纬210度") ;		// String --> ObjectString x = (String)p.getX() ;	// 取出数据先变为String,之后自动拆箱String y = (String)p.getY() ;	// 取出数据先变为String,之后自动拆箱System.out.println("字符串表示,X坐标为:" + x) ;System.out.println("字符串表示,Y坐标为:" + y) ;}
};

以上代码存在很大问题,如果现在假设有以下的程序代码。
class Point{private Object x ;		// 表示X坐标private Object y ;		// 表示Y坐标public void setX(Object x){this.x = x ;}public void setY(Object y){this.y = y ;}public Object getX(){return this.x ;}public Object getY(){return this.y ;}
};public class GenericsDemo04{public static void main(String args[]){Point p = new Point() ;	// 声明一个Point的对象p.setX(10) ;			// 利用自动装箱操作:int --> Integer --> Objectp.setY("北纬210度") ;		// String --> Objectint x = (Integer)p.getX() ;	// 取出数据先变为Integer,之后自动拆箱int y = (Integer)p.getY() ;	// 取出数据先变为Integer,之后自动拆箱System.out.println("整数表示,X坐标为:" + x) ;System.out.println("整数表示,Y坐标为:" + y) ;}
};


传统的实现方法就有可能出现操作不当的情况,本程序就是数据类型不统一造成的。
认识泛型

泛型的使用

泛型可以解决数据类型的安全性问题,它主要的原理,是在类声明的时候通过一个标识表示类中某个属性的类型或者是某个方法的返回值以及参数类型。这样在类声明或实例化的时候只要指定好需要的类型即可。
泛型的定义格式如下:
 [访问权限] class 类名称<泛型类型1,泛型类型2,......泛型类型3>{
    [访问权限] 泛型类型标识 变量名称;
    [访问权限] 泛型类型标识  方法名称(){ };
    [访问权限]  返回值类型声明 方法名称(泛型类型标识 变量名称){};
}
泛型对象的定义
类名称<具体类型> 对象名称 = new 类名称<具体类型>();

按照此格式定义一个Point类。
class Point<T>{		// 此处可以随便写标识符号,T是type的简称private T var ;	// var的类型由T指定,即:由外部指定public T getVar(){	// 返回值的类型由外部决定return var ;}public void setVar(T var){	// 设置的类型也由外部决定this.var = var ;}
};

写完之后,就可以在对象声明的时候使用了。
class Point<T>{		// 此处可以随便写标识符号,T是type的简称private T var ;	// var的类型由T指定,即:由外部指定public T getVar(){	// 返回值的类型由外部决定return var ;}public void setVar(T var){	// 设置的类型也由外部决定this.var = var ;}
};
public class GenericsDemo06{public static void main(String args[]){Point<String> p = new Point<String>() ;	// 里面的var类型为String类型p.setVar("MLDN") ;		// 设置字符串System.out.println(p.getVar().length()) ;	// 取得字符串的长度}
};

以上是将var变量设置成了String类型,当然也可以设置成Integer,如果设置的内容与指定的泛型类型不一致,则会在编译时就出现错误。
class Point<T>{		// 此处可以随便写标识符号,T是type的简称private T var ;	// var的类型由T指定,即:由外部指定public T getVar(){	// 返回值的类型由外部决定return var ;}public void setVar(T var){	// 设置的类型也由外部决定this.var = var ;}
};
public class GenericsDemo07{public static void main(String args[]){Point<Integer> p = new Point<Integer>() ;	// 里面的var类型为String类型p.setVar("MLDN") ;		// 设置字符串}
};


这样可以更好的去保护数据类型。
 通过泛型就可以直接去修改之前的程序。
class Point<T>{private T x ;		// 表示X坐标private T y ;		// 表示Y坐标public void setX(T x){this.x = x ;}public void setY(T y){this.y = y ;}public T getX(){return this.x ;}public T getY(){return this.y ;}
};public class GenericsPoint{public static void main(String args[]){Point<Integer> p = new Point<Integer>() ;p.setX(10) ;		// 利用自动装箱操作:int --> Integerp.setY(20) ;		// 利用自动装箱操作:int --> Integerint x = p.getX() ;	// 自动拆箱int y = p.getY() ;	// 自动拆箱System.out.println("整数表示,X坐标为:" + x) ;System.out.println("整数表示,Y坐标为:" + y) ;}
};
在这样程序里,减少类类型转换的操作代码,而且更加安全,如果设置的内容不是数字,则在编译的时候就会出现错误,如下所示:
class Point<T>{private T x ;		// 表示X坐标private T y ;		// 表示Y坐标public void setX(T x){this.x = x ;}public void setY(T y){this.y = y ;}public T getX(){return this.x ;}public T getY(){return this.y ;}
};public class GenericsPoint{public static void main(String args[]){Point<Integer> p = new Point<Integer>() ;p.setX(10) ;		// 利用自动装箱操作:int --> Integerp.setY("北纬210度") ;		// 利用自动装箱操作:int --> Integerint x = p.getX() ;	// 自动拆箱int y = p.getY() ;	// 自动拆箱System.out.println("整数表示,X坐标为:" + x) ;System.out.println("整数表示,Y坐标为:" + y) ;}
};


泛型也可以在构造方法中使用,一般有可能使用构造方法为类中的属性赋值。

构造方法中使用泛型

构造方法可以为类中的属性初始化,那么如果类中的属性通过泛型指定 而又需要通过构造设置属性内容的时候,那么构造方法的定义与之前并无不同,不需要像声明类那样指定泛型。
使用格式:
[访问权限] 构造方法 ([<泛型类型>  参数名称]){ }
 例如:
class Point<T>{		// 此处可以随便写标识符号,T是type的简称private T var ;	// var的类型由T指定,即:由外部指定public Point(T var){		// 通过构造方法设置内容this.var = var ;}public T getVar(){	// 返回值的类型由外部决定return var ;}public void setVar(T var){	// 设置的类型也由外部决定this.var = var ;}
};
public class GenericsDemo08{public static void main(String args[]){Point<String> p = new Point<String>("liuxun") ;	// 里面的var类型为String类型System.out.println("内容:" + p.getVar()) ;}
};

在泛型中也可以指定多个泛型。

设置多个泛型,实例如下:
class Notepad<K,V>{		// 此处指定了两个泛型类型private K key ;		// 此变量的类型由外部决定private V value ;	// 此变量的类型由外部决定public K getKey(){return this.key ;}public V getValue(){return this.value ;}public void setKey(K key){this.key = key ;}public void setValue(V value){this.value = value ;}
};
public class GenericsDemo09{public static void main(String args[]){Notepad<String,Integer> t = null ;		// 定义两个泛型类型的对象t = new Notepad<String,Integer>() ;		// 里面的key为String,value为Integert.setKey("刘勋") ;		// 设置第一个内容t.setValue(22) ;			// 设置第二个内容System.out.print("姓名;" + t.getKey()) ;		// 取得信息System.out.print(",年龄;" + t.getValue()) ;		// 取得信息}
};



泛型的安全警告

在泛型应用中最好在声明类对象的时候指定好其内部的数据类型,例如"Info<String>" ,但也可以不指定类型。
class Info<T>{private T var ;public T getVar(){return this.var ;}public void setVar(T var){this.var = var ;}public String toString(){		// 覆写Object类中的toString()方法return this.var.toString() ;}
};
public class GenericsDemo10{public static void main(String args[]){Info i = new Info() ;		// 警告,没有指定泛型类型i.setVar("MLDN") ;			// 设置字符串System.out.println("内容:" + i.getVar()) ;}
};


在Info类中并没有指定泛型的类型,则在Java中为了保证程序依然可以使用,会将T设置成Object类型,这样一来,就可以接收任何的数据类型,也就是说此时var的类型是Object,所有的泛型信息将被擦除,实际上,以上的程序就相当于以下的定义格式:
class Info<T>{private T var ;public T getVar(){return this.var ;}public void setVar(T var){this.var = var ;}public String toString(){		// 覆写Object类中的toString()方法return this.var.toString() ;}
};
public class GenericsDemo11{public static void main(String args[]){Info<Object> i = new Info<Object>() ;		// 指定Object为泛型类型i.setVar("MLDN") ;			// 设置字符串System.out.println("内容:" + i.getVar()) ;}
};

泛型的安全警告
在泛型应用中最好在声明类的时候指定其内部的数据类型,例如:"Info<String>",但也可以不指定类型,这样一来用户在使用这样的类的时候就会出现不安全的警告信息,如下图:



总结:
1、泛型的产生意义:为了保证数据的安全性。
2、泛型的基本使用,由外部指定的其具体操作类型。

这篇关于Java中泛型的介绍与简单使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115244

相关文章

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及