使用xinference部署自定义embedding模型(docker)

2024-08-28 15:12

本文主要是介绍使用xinference部署自定义embedding模型(docker),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用xinference部署自定义embedding模型(docker)

说明:

  • 首次发表日期:2024-08-27
  • 官方文档: https://inference.readthedocs.io/zh-cn/latest/index.html

使用docker部署xinference

FROM nvcr.io/nvidia/pytorch:23.10-py3# Keeps Python from generating .pyc files in the container
ENV PYTHONDONTWRITEBYTECODE=1# Turns off buffering for easier container logging
ENV PYTHONUNBUFFERED=1RUN python3 -m pip uninstall -y transformer-engine
RUN python3 -m pip install --upgrade pipRUN python3 -m pip install torch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 --no-cache-dir --index-url https://download.pytorch.org/whl/cu121# If there are network issue, you can download torch whl file and use it
# ADD torch-2.3.0+cu121-cp310-cp310-linux_x86_64.whl /root/torch-2.3.0+cu121-cp310-cp310-linux_x86_64.whl
# RUN python3 -m pip install /root/torch-2.3.0+cu121-cp310-cp310-linux_x86_64.whlRUN python3 -m pip install packaging setuptools==69.5.1 --no-cache-dir -i https://mirror.baidu.com/pypi/simple
RUN python3 -m pip install -U ninja --no-cache-dir -i https://mirror.baidu.com/pypi/simple
RUN python3 -m pip install flash-attn==2.5.8 --no-build-isolation --no-cache-dir
RUN python3 -m pip install "xinference[all]" --no-cache-dir -i https://repo.huaweicloud.com/repository/pypi/simpleEXPOSE 80CMD ["sh", "-c", "tail -f /dev/null"]

构建镜像

docker build -t myxinference:latest .

参照 https://inference.readthedocs.io/zh-cn/latest/getting_started/using_docker_image.html#mount-your-volume-for-loading-and-saving-models 部署docker服务

另外,如果使用huggingface的话,建议使用 https://hf-mirror.com/ 镜像(记得docker部署时设置HF_ENDPOINT环境变量)。

以下假设部署后的服务地址为 http://localhost:9997

部署自定义 embedding 模型

准备embedding模型自定义JSON文件

创建文件夹custom_models/embedding

mkdir -p custom_models/embedding

然后创建以下模型自定义JSON文件:

360Zhinao-search.json:

{"model_name": "360Zhinao-search","dimensions": 1024,"max_tokens": 512,"language": ["en", "zh"],"model_id": "qihoo360/360Zhinao-search","model_format": "pytorch"
}

gte-Qwen2-7B-instruct.json

{"model_name": "gte-Qwen2-7B-instruct","dimensions": 4096,"max_tokens": 32768,"language": ["en", "zh"],"model_id": "Alibaba-NLP/gte-Qwen2-7B-instruct","model_format": "pytorch"
}

zpoint_large_embedding_zh.json:

{"model_name": "zpoint_large_embedding_zh","dimensions": 1792,"max_tokens": 512,"language": ["zh"],"model_id": "iampanda/zpoint_large_embedding_zh","model_format": "pytorch"
}

注意:对于下载到本地的模型可以设置 model_uri参数,例如 “[file:///path/to/llama-2-7b](file:///path/to/llama-2-7b)”。

注册自定义 embedding 模型

xinference register --model-type embedding --file custom_models/embedding/360Zhinao-search.json --persist --endpoint http://localhost:9997xinference register --model-type embedding --file custom_models/embedding/gte-Qwen2-7B-instruct.json --persist --endpoint http://localhost:9997xinference register --model-type embedding --file custom_models/embedding/zpoint_large_embedding_zh.json --persist --endpoint http://localhost:9997

启动自定义 embedding 模型

xinference launch --model-type embedding --model-name gte-Qwen2-7B-instruct --model-engine transformers  --model-format pytorch --endpoint http://localhost:9997xinference launch --model-type embedding --model-name 360Zhinao-search --model-engine transformers  --model-format pytorch --endpoint http://localhost:9997xinference launch --model-type embedding --model-name zpoint_large_embedding_zh --model-engine transformers  --model-format pytorch --endpoint http://localhost:9997

启动bge-m3和bge-reranker-base模型

bge-m3和bge-reranker-base是比较常用的embedding模型和reranking模型。

xinference launch --model-name bge-m3 --model-type embedding --endpoint http://localhost:9997xinference launch --model-name bge-reranker-base --model-type rerank --endpoint http://localhost:9997

curl调用测试

embedding:

curl http://localhost:9997/v1/embeddings \-H "Content-Type: application/json" \-d '{"input": "The food was delicious and the waiter...","model": "360Zhinao-search","encoding_format": "float"}'

reranking:

curl http://localhost:9997/v1/rerank \-H "Content-Type: application/json" \-d '{"model": "bge-reranker-base","query": "I love you","documents": ["I hate you","I really like you","天空是什么颜色的","黑芝麻味饼干"],"top_n": 3
}'

这篇关于使用xinference部署自定义embedding模型(docker)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115124

相关文章

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring配置扩展之JavaConfig的使用小结

《Spring配置扩展之JavaConfig的使用小结》JavaConfig是Spring框架中基于纯Java代码的配置方式,用于替代传统的XML配置,通过注解(如@Bean)定义Spring容器的组... 目录JavaConfig 的概念什么是JavaConfig?为什么使用 JavaConfig?Jav

JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)

《JavaWeb项目创建、部署、连接数据库保姆级教程(tomcat)》:本文主要介绍如何在IntelliJIDEA2020.1中创建和部署一个JavaWeb项目,包括创建项目、配置Tomcat服务... 目录简介:一、创建项目二、tomcat部署1、将tomcat解压在一个自己找得到路径2、在idea中添加

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Android使用java实现网络连通性检查详解

《Android使用java实现网络连通性检查详解》这篇文章主要为大家详细介绍了Android使用java实现网络连通性检查的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录NetCheck.Java(可直接拷贝)使用示例(Activity/Fragment 内)权限要求

C# 预处理指令(# 指令)的具体使用

《C#预处理指令(#指令)的具体使用》本文主要介绍了C#预处理指令(#指令)的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1、预处理指令的本质2、条件编译指令2.1 #define 和 #undef2.2 #if, #el

C#中Trace.Assert的使用小结

《C#中Trace.Assert的使用小结》Trace.Assert是.NET中的运行时断言检查工具,用于验证代码中的关键条件,下面就来详细的介绍一下Trace.Assert的使用,具有一定的参考价值... 目录1、 什么是 Trace.Assert?1.1 最简单的比喻1.2 基本语法2、⚡ 工作原理3

C# IPAddress 和 IPEndPoint 类的使用小结

《C#IPAddress和IPEndPoint类的使用小结》本文主要介绍了C#IPAddress和IPEndPoint类的使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录一、核心作用网络编程基础类二、IPAddress 类详解三种初始化方式1. byte 数组初始化2. l