poj 2154 Color(polya计数 + 欧拉函数优化)

2024-08-28 10:32

本文主要是介绍poj 2154 Color(polya计数 + 欧拉函数优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://poj.org/problem?id=2154


大致题意:由n个珠子,n种颜色,组成一个项链。要求不同的项链数目,旋转后一样的属于同一种,结果模p。


n个珠子应该有n种旋转置换,每种置换的循环个数为gcd(i,n)。如果直接枚举i,显然不行。但是我们可以缩小枚举的数目。改为枚举每个循环节的长度L,那么相应的循环节数是n/L。所以我们只需求出每个L有多少个i满足gcd(i,n)= n/L,就得到了循环节数为n/L的个数。重点就是求出这样的i的个数。


令cnt = gcd(i,n) = n/L;

那么cnt | i,令i = cnt*t(0 <= t <= L);

又 n = cnt * L ;

所以gcd(i,n) = gcd( cnt*t, cnt*L) = cnt,

满足上式的条件是 gcd(t,L) = 1。

而这样的t 有Eular(L)个。

因此循环节个数是n/L的置换个数有Eular(L)个。

参考博客:http://blog.csdn.net/tsaid/article/details/7366708


代码中求欧拉函数是基于素数筛的,素数只需筛到sqrt(1e9)即可。我在筛素数的同时递推的记录了sqrt(1e9)以内的Eular(n),用phi[]表示。这样会快那么一点点。


#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;const int maxn = 35000;
const int INF = 0x3f3f3f3f;int n,p;
int ans;
int prime[maxn];
int flag[maxn];
int prime_num;
int phi[maxn];int mod_exp(int a, int b, int c)
{int res = 1;a = a%c;while(b){if(b&1)res = (res*a)%c;a = (a*a)%c;b >>= 1;}return res;
}//素数筛并记录maxn以内的Eular(n),用phi[]表示
void get_prime()
{memset(flag,0,sizeof(flag));prime_num = 0;phi[1] = 1;for(int i = 2; i <= maxn; i++){if(!flag[i]){prime[++prime_num] = i;phi[i] = i-1;}for(int j = 1; j <= prime_num && i*prime[j] <= maxn; j++){flag[i*prime[j]] = 1;if(i % prime[j] == 0)phi[i*prime[j]] = phi[i] * prime[j];else phi[i*prime[j]] = phi[i] * (prime[j]-1);}}
}int Eular(int n)
{if(n < maxn)return phi[n] % p;//求大于maxn的Eular(n)int res = n;for(int i = 1; prime[i]*prime[i] <= n && i <= prime_num; i++){if(n % prime[i] == 0){res -= res/prime[i];while(n%prime[i] == 0)n = n/prime[i];}}if(n > 1)res -= res/n;return res%p;
}int main()
{int test;get_prime();scanf("%d",&test);while(test--){scanf("%d %d",&n,&p);ans = 0;for(int l = 1; l*l <= n; l++){if(l*l == n){ans = (ans + Eular(l)*mod_exp(n,l-1,p))%p;}else if(n%l == 0) //循环节长度为l,那么n/l也是循环节长度{ans = (ans + Eular(l)*mod_exp(n,n/l-1,p))%p;ans = (ans + Eular(n/l)*mod_exp(n,l-1,p))%p;}}printf("%d\n",ans);}return 0;
}


这篇关于poj 2154 Color(polya计数 + 欧拉函数优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114509

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.