POJ 1847 Tram(Dijkstra单源有向图最短路径算法)

2024-08-28 08:08

本文主要是介绍POJ 1847 Tram(Dijkstra单源有向图最短路径算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

//Accepted	212 KB	0 ms	C++	1096 B	2013-02-27 19:42:55/*
Sample Input
3 2 1
2 2 3
2 3 1
2 1 2
Sample Output
0
题意:给出N个站点,每个站点都有铁路通向其它的多个站点。如果当前要走的铁路是现在开关指向的铁路,则直接走即可,否则要手动扳动开关。 难理解的可能是题意:直接指向的 w = 0, 需要手动扳动的 w = 1第一行给出了站点的总数、起点和终点的标号。剩下的N行:表示1~N 个站点的铁路连接情况。每行的第一个数表示该站点的铁路数,第二个数,表示当前默认通往的站点。
思路:最短路问题 Dijonkstra 算法把需要扳动的次数看成是路径长度建图即可。
最朴素的Dijkstra 算法分析 PS:来自 《算法竞赛入门经典》 刘汝佳 P202
伪代码:
清除所有点的标号
设d[0]=0, 其它d[i] = INF
循环n次
{在所有未标号节点中,选出d值 最小的节点 x标记节点 x对于从x 出发的说有边(x,y),更新 d[y] = min(d[y], d[x]+w[x][y])
} 对应代码
假设起点节点为0,d[i] 表示起点到i的长度。
v[i]=0 表示未标号 v[i]=1表示已标号 
w[x][y]==INF 表示边(x,y) 不存在。memset(v,0,sizeof(v));
for(int i = 0; i < n; i++) d[i] = (i==0 ? 0 : INF);
for(int i = 0; i < n; i++)
{int x ,m = INF;for(int y=0; y<n; y++) if(!v[y] && d[y]<=m) m=d[x=y];v[x] = 1;for(int y=0; y<n; y++) d[y] <?= d[x]+w[x][y];
} */
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;const int maxn = 110;
const int INF = 100000000;int w[maxn][maxn]; //w[i][j]表示是否连通 0默认 1需手动调节 INF不连通 
bool vis[maxn]; //标记是否使用 
int dist[maxn]; //dist[i]表示从起点到点i的距离 void Dijkstra(int n,int start,int end)
{memset(vis,false,sizeof(vis)); //清除所有的点 for(int i=1;i<=n;i++)dist[i] = w[start][i];dist[start] = 0;vis[start] = true; //标记起点 for(int i=1; i<=n; i++) //循环n 次 {int x=0, m = INF;for(int y = 1; y <= n; y++) //在所有未标号的节点中,选出dist值的最小点x if(!vis[y] && dist[y] <= m)m = dist[x=y];vis[x] = true;//给节点 x 标记for(int y = 1; y <= n; y++)//更新  松弛操作 dist[y] = min(dist[y],dist[x]+w[x][y]);}if(dist[end] == INF) printf("-1\n");else printf("%d\n", dist[end]);
}
int main()
{int n,start,end; //点的个数,起点,终点 while(scanf("%d%d%d", &n, &start, &end)!=EOF){ for(int i=1;i<=n;i++){dist[i] = INF;for(int j=1;j<=n;j++)w[i][j] = INF;}int path,y;for(int i=1;i<=n;i++){scanf("%d", &path);for(int j=1;j<=path;j++){scanf("%d",&y);if(j==1) w[i][y] = 0;//默认 else w[i][y] = 1; //需手动调节 }}Dijkstra(n,start,end);}return 0;
}

这篇关于POJ 1847 Tram(Dijkstra单源有向图最短路径算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114202

相关文章

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

VSCode设置python SDK路径的实现步骤

《VSCode设置pythonSDK路径的实现步骤》本文主要介绍了VSCode设置pythonSDK路径的实现步骤,包括命令面板切换、settings.json配置、环境变量及虚拟环境处理,具有一定... 目录一、通过命令面板快速切换(推荐方法)二、通过 settings.json 配置(项目级/全局)三、

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

一文详解如何查看本地MySQL的安装路径

《一文详解如何查看本地MySQL的安装路径》本地安装MySQL对于初学者或者开发人员来说是一项基础技能,但在安装过程中可能会遇到各种问题,:本文主要介绍如何查看本地MySQL安装路径的相关资料,需... 目录1. 如何查看本地mysql的安装路径1.1. 方法1:通过查询本地服务1.2. 方法2:通过MyS

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各