基于机器学习的工业制造缺陷分析预测系统

2024-08-28 07:28

本文主要是介绍基于机器学习的工业制造缺陷分析预测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B站视频及代码下载:基于机器学习的工业制造缺陷分析预测系统-视频-代码

1. 项目简介

        制造缺陷是工业生产过程中面临的重大挑战之一,对产品质量和生产效率产生直接影响。准确预测和分析制造缺陷的发生,可以帮助企业提高生产质量、降低成本,并优化供应链管理。通过机器学习模型分析影响制造缺陷的主要因素,能够为制造业提供有效的改进策略和预防措施,从而提升整体生产效能。本项目,我们提出了一种数据科学方法,使用包括各种生产指标、供应链因素、质量控制评估、维护计划、劳动力生产率指标、能耗模式和增材制造细节的综合数据集,利用 Xgboost建模训练,测试集预测 AUC 达到99.7%,并搭建交互式分析系统来预测制造缺陷。

基于机器学习的工业制造缺陷分析预测系统

2. 数据探索式可视化分析 

        为了更好地理解数据分布和特征之间的关系,我们首先进行了数据探索式的可视化分析。这一步骤对于发现异常值、理解数据分布以及发现潜在的模式至关重要。

        关键技术点:

  • Pandas: 用于数据处理和清洗。
  • Matplotlib: 绘制基本图表。
  • Seaborn: 进行更复杂的统计图形绘制。

2.1 数据集读取与预处理

        本数据集包含了多个与制造缺陷相关的生产参数,数据来自不同的生产批次,旨在通过机器学习模型预测制造缺陷的发生,并分析主要的影响因素。数据集包括了生产量、生产成本、供应商质量、交货延迟、缺陷率、质量评分、维护时间、停机时间百分比、库存周转率等多个变量。

df = pd.read_csv("./manufacturing_defect_dataset.csv")
## 列名汉化
df.rename(columns={"ProductionVolume":"生产量","ProductionCost":"生产成本","SupplierQuality":"供应商质量评分","DeliveryDelay":"交货延迟","DefectRate":"缺陷率","QualityScore":"质量评分","MaintenanceHours":"维护时间","DowntimePercentage":"停机时间百分比","InventoryTurnover":"库存周转率","StockoutRate":"缺货率","WorkerProductivity":"工人生产力",\"SafetyIncidents":"安全事故数","EnergyConsumption":"能源消耗","EnergyEfficiency": "能源效率","AdditiveProcessTime": "附加加工时间","AdditiveMaterialCost": "附加材料成本","DefectStatus": "缺陷状态"
},inplace=True)df.sample(10)

2.2 类别标签数量分布

tmp = df["缺陷状态"].value_counts().to_frame().reset_index().rename(columns={"count":"数量"})tmp["缺陷状态"] = tmp["缺陷状态"].map(lambda x:"是" if x == 1 else "否")
tmp["百分比"] = tmp["数量"].map(lambda x:round(x/tmp["数量"].sum()*100,2))labels,values,percent = tmp["缺陷状态"].tolist(),tmp["数量"].tolist(),tmp["百分比"].tolist()

        可以看出,不存在缺陷的占 15.96%,这是一个类别非常不均衡的二分类问题,需要采用采样算法去平衡数据集的占比。

2.3 特征与目标的相关性分析

fig,ax = plt.subplots(1,1,figsize=(20, 16))
cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(df.corr(), annot= True, cmap=cmap, vmax=.5, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})
ax.set_xticklabels(labels=df.columns, rotation=90, fontsize=12)
ax.set_yticklabels(labels=df.columns, rotation=00, fontsize=12)
plt.show()

       可以看出:与观测值(工业制造缺陷)的相关性较高的特征有:生产量、缺陷率、质量评分、维护时间,其中质量评分呈现较强负相关,另外3个呈现较强的正相关,此外,其他特征与观测值的相关性不明显.

2.4 直方图和密度图上的数据分布

2.5 缺陷影响因素分析

num_columns = ['生产量', '缺陷率', '质量评分', '维护时间', '缺货率', '供应商质量评分']
plt.figure(figsize=(15, 10))
for i, column in enumerate(num_columns, 1):plt.subplot(3, 3, i)sns.boxplot(data=df, x='缺陷状态', y=column)plt.title(f'{column} by 缺陷')plt.ylabel(column if i % 3 != 1 else '') plt.tight_layout()
plt.show()

 

3. 样本采样均衡与扩充处理

        在处理不平衡的数据集时,数据集扩充技术显得尤为重要。不平衡数据集是指目标变量的各类别之间存在显著数量差异的数据集,在这种情况下,模型可能会偏向于多数类,导致少数类别的预测性能较差。为了解决这个问题,我们可以使用imbalanced-learn库中的两种常用方法:过采样和欠采样。

        (1)过采样 (RandomOverSampler)

        过采样是指增加少数类样本的数量,通常通过复制现有的样本或合成新的样本实现。RandomOverSampler是一种简单直接的方法,它随机重复少数类样本以平衡数据集。

        (2)欠采样 (RandomUnderSampler)

        欠采样是指减少多数类样本的数量,以平衡各类别之间的比例。RandomUnderSampler同样是一个简单直接的方法,它随机选择多数类样本的一部分,使多数类与少数类的数量相同。

        (3)结合使用过采样和欠采样

        在某些情况下,同时使用过采样和欠采样的方法可以达到更好的效果。例如,先使用RandomUnderSampler减少多数类样本的数量,然后再使用RandomOverSampler增加少数类样本的数量。

# Separate features and target variable
X = df.drop(columns=['缺陷状态'])
y = df['缺陷状态']# Count the occurrences of each class
class_counts = y.value_counts()# Calculate the target count for each class
target_count = min(class_counts)#########
# 省略部分代码
########## Apply resampling
print('X:', X.shape)
X_over, y_over = over_sampler.fit_resample(X, y)
print('X_over:', X_over.shape)
X_resampled, y_resampled = under_sampler.fit_resample(X_over, y_over)
print('X_resampled:', X_resampled.shape)# Concat
df_resampled = pd.concat([pd.DataFrame(X_resampled, columns=X.columns), pd.DataFrame(y_resampled, columns=['缺陷状态'])], axis=1)
df_resampled.shape

4. 基于机器学习的工业制造缺陷建模

4.1 切分出训练集、验证集和测试集

y_train_all = df_resampled['缺陷状态']
X_train_all = df_resampled.drop(columns=['缺陷状态'])X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.1, random_state=42)print('train: {}, valid: {}, test: {}'.format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))
train: 4410, valid: 545, test: 491

4.2 多模型预测性能对比初探

        初步选择 AdaBoost、GBT、LR、SVC、Xgboost这五类模型集成初步试验,选择性能最好的模型,以后续针对性的优化:

abc = AdaBoostClassifier()
gbc = GradientBoostingClassifier()
lgr = LogisticRegression()
svc = SVC()
xgb_clf = XGBClassifier()models = [abc, gbc, lgr, svc, xgb_clf]names = ["Ada Boost", "Gradient Boosting","Logistic Regression", "Support Vector Machine", "XGBoost"]def training(model):# 省略部分关键代码cm = confusion_matrix(pred, y_test)return score*100, report, cmscores, reports, cms = [], dict(), dict()
for i, j in zip(models, names):score, report, cm = training(i)scores += [score]reports[j] = reportcms[j] = cm

        可以看出,在默认参数下, XGBoost 的性能最好,达到99.39%.

4.3 XGBoost 模型优化

        通过调优XGBoost模型参数,通过验证集的预测性能进行参数调优:

df_columns = X_train.columns.values
print('===> feature count: {}'.format(len(df_columns)))xgb_params = {'eta': 0.5,'colsample_bytree': 0.4,'max_depth': 8,# 'lambda': 2.0,'eval_metric': 'auc','objective': 'binary:logistic','nthread': -1,'silent': 1,'booster': 'gbtree'
}dtrain = xgb.DMatrix(X_train, y_train, feature_names=df_columns)
dvalid = xgb.DMatrix(X_valid, y_valid, feature_names=df_columns)watchlist = [(dtrain, 'train'), (dvalid, 'valid')]model = xgb.train(dict(xgb_params),dtrain,evals=watchlist,verbose_eval=10,early_stopping_rounds=100,num_boost_round=4000)
[0]	train-auc:0.87004	valid-auc:0.85053
[10]	train-auc:0.99983	valid-auc:0.99744
[20]	train-auc:1.00000	valid-auc:0.99973
[30]	train-auc:1.00000	valid-auc:0.99993
[40]	train-auc:1.00000	valid-auc:0.99997
[50]	train-auc:1.00000	valid-auc:0.99993
[60]	train-auc:1.00000	valid-auc:0.99995
[70]	train-auc:1.00000	valid-auc:0.99993
[80]	train-auc:1.00000	valid-auc:0.99992
[90]	train-auc:1.00000	valid-auc:0.99995
[100]	train-auc:1.00000	valid-auc:0.99995
[110]	train-auc:1.00000	valid-auc:0.99995
[120]	train-auc:1.00000	valid-auc:0.99995
[130]	train-auc:1.00000	valid-auc:0.99995
[138]	train-auc:1.00000	valid-auc:0.99996

4.4 特征重要程度分布

4.5 模型性能评估

4.5.1 AUC 指标评估
# predict train
predict_train = model.predict(dtrain)
train_auc = evaluate_score(predict_train, y_train)# predict validate
predict_valid = model.predict(dvalid)
valid_auc = evaluate_score(predict_valid, y_valid)# predict test
dtest = xgb.DMatrix(X_test, feature_names=df_columns)
predict_test = model.predict(dtest)
test_auc = evaluate_score(predict_test, y_test)print('训练集 auc = {:.7f} , 验证集 auc = {:.7f} , 测试集 auc = {:.7f}\n'.format(train_auc, valid_auc, test_auc))
训练集 auc = 1.0000000 , 验证集 auc = 0.9999596 , 测试集 auc = 0.9971614

4.5.2 测试集预测 ROC 曲线

4.5.3 测试集预测结果混淆矩阵计算 

5. 基于机器学习的工业制造缺陷预测系统

5.1 系统首页

5.2 特征与目标的相关性分析

5.3 缺陷影响因素分析

5.4 工业制造缺陷预测

6. 结论

        本项目,我们提出了一种数据科学方法,使用包括各种生产指标、供应链因素、质量控制评估、维护计划、劳动力生产率指标、能耗模式和增材制造细节的综合数据集,利用 Xgboost建模训练,测试集预测 AUC 达到99.7%,并搭建交互式分析系统来预测制造缺陷。

  B站视频及代码下载:基于机器学习的工业制造缺陷分析预测系统-视频-代码

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的师姐 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

这篇关于基于机器学习的工业制造缺陷分析预测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114114

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处