基于机器学习的工业制造缺陷分析预测系统

2024-08-28 07:28

本文主要是介绍基于机器学习的工业制造缺陷分析预测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

B站视频及代码下载:基于机器学习的工业制造缺陷分析预测系统-视频-代码

1. 项目简介

        制造缺陷是工业生产过程中面临的重大挑战之一,对产品质量和生产效率产生直接影响。准确预测和分析制造缺陷的发生,可以帮助企业提高生产质量、降低成本,并优化供应链管理。通过机器学习模型分析影响制造缺陷的主要因素,能够为制造业提供有效的改进策略和预防措施,从而提升整体生产效能。本项目,我们提出了一种数据科学方法,使用包括各种生产指标、供应链因素、质量控制评估、维护计划、劳动力生产率指标、能耗模式和增材制造细节的综合数据集,利用 Xgboost建模训练,测试集预测 AUC 达到99.7%,并搭建交互式分析系统来预测制造缺陷。

基于机器学习的工业制造缺陷分析预测系统

2. 数据探索式可视化分析 

        为了更好地理解数据分布和特征之间的关系,我们首先进行了数据探索式的可视化分析。这一步骤对于发现异常值、理解数据分布以及发现潜在的模式至关重要。

        关键技术点:

  • Pandas: 用于数据处理和清洗。
  • Matplotlib: 绘制基本图表。
  • Seaborn: 进行更复杂的统计图形绘制。

2.1 数据集读取与预处理

        本数据集包含了多个与制造缺陷相关的生产参数,数据来自不同的生产批次,旨在通过机器学习模型预测制造缺陷的发生,并分析主要的影响因素。数据集包括了生产量、生产成本、供应商质量、交货延迟、缺陷率、质量评分、维护时间、停机时间百分比、库存周转率等多个变量。

df = pd.read_csv("./manufacturing_defect_dataset.csv")
## 列名汉化
df.rename(columns={"ProductionVolume":"生产量","ProductionCost":"生产成本","SupplierQuality":"供应商质量评分","DeliveryDelay":"交货延迟","DefectRate":"缺陷率","QualityScore":"质量评分","MaintenanceHours":"维护时间","DowntimePercentage":"停机时间百分比","InventoryTurnover":"库存周转率","StockoutRate":"缺货率","WorkerProductivity":"工人生产力",\"SafetyIncidents":"安全事故数","EnergyConsumption":"能源消耗","EnergyEfficiency": "能源效率","AdditiveProcessTime": "附加加工时间","AdditiveMaterialCost": "附加材料成本","DefectStatus": "缺陷状态"
},inplace=True)df.sample(10)

2.2 类别标签数量分布

tmp = df["缺陷状态"].value_counts().to_frame().reset_index().rename(columns={"count":"数量"})tmp["缺陷状态"] = tmp["缺陷状态"].map(lambda x:"是" if x == 1 else "否")
tmp["百分比"] = tmp["数量"].map(lambda x:round(x/tmp["数量"].sum()*100,2))labels,values,percent = tmp["缺陷状态"].tolist(),tmp["数量"].tolist(),tmp["百分比"].tolist()

        可以看出,不存在缺陷的占 15.96%,这是一个类别非常不均衡的二分类问题,需要采用采样算法去平衡数据集的占比。

2.3 特征与目标的相关性分析

fig,ax = plt.subplots(1,1,figsize=(20, 16))
cmap = sns.diverging_palette(230, 20, as_cmap=True)
sns.heatmap(df.corr(), annot= True, cmap=cmap, vmax=.5, center=0,square=True, linewidths=.5, cbar_kws={"shrink": .5})
ax.set_xticklabels(labels=df.columns, rotation=90, fontsize=12)
ax.set_yticklabels(labels=df.columns, rotation=00, fontsize=12)
plt.show()

       可以看出:与观测值(工业制造缺陷)的相关性较高的特征有:生产量、缺陷率、质量评分、维护时间,其中质量评分呈现较强负相关,另外3个呈现较强的正相关,此外,其他特征与观测值的相关性不明显.

2.4 直方图和密度图上的数据分布

2.5 缺陷影响因素分析

num_columns = ['生产量', '缺陷率', '质量评分', '维护时间', '缺货率', '供应商质量评分']
plt.figure(figsize=(15, 10))
for i, column in enumerate(num_columns, 1):plt.subplot(3, 3, i)sns.boxplot(data=df, x='缺陷状态', y=column)plt.title(f'{column} by 缺陷')plt.ylabel(column if i % 3 != 1 else '') plt.tight_layout()
plt.show()

 

3. 样本采样均衡与扩充处理

        在处理不平衡的数据集时,数据集扩充技术显得尤为重要。不平衡数据集是指目标变量的各类别之间存在显著数量差异的数据集,在这种情况下,模型可能会偏向于多数类,导致少数类别的预测性能较差。为了解决这个问题,我们可以使用imbalanced-learn库中的两种常用方法:过采样和欠采样。

        (1)过采样 (RandomOverSampler)

        过采样是指增加少数类样本的数量,通常通过复制现有的样本或合成新的样本实现。RandomOverSampler是一种简单直接的方法,它随机重复少数类样本以平衡数据集。

        (2)欠采样 (RandomUnderSampler)

        欠采样是指减少多数类样本的数量,以平衡各类别之间的比例。RandomUnderSampler同样是一个简单直接的方法,它随机选择多数类样本的一部分,使多数类与少数类的数量相同。

        (3)结合使用过采样和欠采样

        在某些情况下,同时使用过采样和欠采样的方法可以达到更好的效果。例如,先使用RandomUnderSampler减少多数类样本的数量,然后再使用RandomOverSampler增加少数类样本的数量。

# Separate features and target variable
X = df.drop(columns=['缺陷状态'])
y = df['缺陷状态']# Count the occurrences of each class
class_counts = y.value_counts()# Calculate the target count for each class
target_count = min(class_counts)#########
# 省略部分代码
########## Apply resampling
print('X:', X.shape)
X_over, y_over = over_sampler.fit_resample(X, y)
print('X_over:', X_over.shape)
X_resampled, y_resampled = under_sampler.fit_resample(X_over, y_over)
print('X_resampled:', X_resampled.shape)# Concat
df_resampled = pd.concat([pd.DataFrame(X_resampled, columns=X.columns), pd.DataFrame(y_resampled, columns=['缺陷状态'])], axis=1)
df_resampled.shape

4. 基于机器学习的工业制造缺陷建模

4.1 切分出训练集、验证集和测试集

y_train_all = df_resampled['缺陷状态']
X_train_all = df_resampled.drop(columns=['缺陷状态'])X_train, X_valid, y_train, y_valid = train_test_split(X_train_all, y_train_all, test_size=0.1, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X_train, y_train, test_size=0.1, random_state=42)print('train: {}, valid: {}, test: {}'.format(X_train.shape[0], X_valid.shape[0], X_test.shape[0]))
train: 4410, valid: 545, test: 491

4.2 多模型预测性能对比初探

        初步选择 AdaBoost、GBT、LR、SVC、Xgboost这五类模型集成初步试验,选择性能最好的模型,以后续针对性的优化:

abc = AdaBoostClassifier()
gbc = GradientBoostingClassifier()
lgr = LogisticRegression()
svc = SVC()
xgb_clf = XGBClassifier()models = [abc, gbc, lgr, svc, xgb_clf]names = ["Ada Boost", "Gradient Boosting","Logistic Regression", "Support Vector Machine", "XGBoost"]def training(model):# 省略部分关键代码cm = confusion_matrix(pred, y_test)return score*100, report, cmscores, reports, cms = [], dict(), dict()
for i, j in zip(models, names):score, report, cm = training(i)scores += [score]reports[j] = reportcms[j] = cm

        可以看出,在默认参数下, XGBoost 的性能最好,达到99.39%.

4.3 XGBoost 模型优化

        通过调优XGBoost模型参数,通过验证集的预测性能进行参数调优:

df_columns = X_train.columns.values
print('===> feature count: {}'.format(len(df_columns)))xgb_params = {'eta': 0.5,'colsample_bytree': 0.4,'max_depth': 8,# 'lambda': 2.0,'eval_metric': 'auc','objective': 'binary:logistic','nthread': -1,'silent': 1,'booster': 'gbtree'
}dtrain = xgb.DMatrix(X_train, y_train, feature_names=df_columns)
dvalid = xgb.DMatrix(X_valid, y_valid, feature_names=df_columns)watchlist = [(dtrain, 'train'), (dvalid, 'valid')]model = xgb.train(dict(xgb_params),dtrain,evals=watchlist,verbose_eval=10,early_stopping_rounds=100,num_boost_round=4000)
[0]	train-auc:0.87004	valid-auc:0.85053
[10]	train-auc:0.99983	valid-auc:0.99744
[20]	train-auc:1.00000	valid-auc:0.99973
[30]	train-auc:1.00000	valid-auc:0.99993
[40]	train-auc:1.00000	valid-auc:0.99997
[50]	train-auc:1.00000	valid-auc:0.99993
[60]	train-auc:1.00000	valid-auc:0.99995
[70]	train-auc:1.00000	valid-auc:0.99993
[80]	train-auc:1.00000	valid-auc:0.99992
[90]	train-auc:1.00000	valid-auc:0.99995
[100]	train-auc:1.00000	valid-auc:0.99995
[110]	train-auc:1.00000	valid-auc:0.99995
[120]	train-auc:1.00000	valid-auc:0.99995
[130]	train-auc:1.00000	valid-auc:0.99995
[138]	train-auc:1.00000	valid-auc:0.99996

4.4 特征重要程度分布

4.5 模型性能评估

4.5.1 AUC 指标评估
# predict train
predict_train = model.predict(dtrain)
train_auc = evaluate_score(predict_train, y_train)# predict validate
predict_valid = model.predict(dvalid)
valid_auc = evaluate_score(predict_valid, y_valid)# predict test
dtest = xgb.DMatrix(X_test, feature_names=df_columns)
predict_test = model.predict(dtest)
test_auc = evaluate_score(predict_test, y_test)print('训练集 auc = {:.7f} , 验证集 auc = {:.7f} , 测试集 auc = {:.7f}\n'.format(train_auc, valid_auc, test_auc))
训练集 auc = 1.0000000 , 验证集 auc = 0.9999596 , 测试集 auc = 0.9971614

4.5.2 测试集预测 ROC 曲线

4.5.3 测试集预测结果混淆矩阵计算 

5. 基于机器学习的工业制造缺陷预测系统

5.1 系统首页

5.2 特征与目标的相关性分析

5.3 缺陷影响因素分析

5.4 工业制造缺陷预测

6. 结论

        本项目,我们提出了一种数据科学方法,使用包括各种生产指标、供应链因素、质量控制评估、维护计划、劳动力生产率指标、能耗模式和增材制造细节的综合数据集,利用 Xgboost建模训练,测试集预测 AUC 达到99.7%,并搭建交互式分析系统来预测制造缺陷。

  B站视频及代码下载:基于机器学习的工业制造缺陷分析预测系统-视频-代码

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的师姐 QQ 名片 :)

精彩专栏推荐订阅:

1. Python数据挖掘精品实战案例

2. 计算机视觉 CV 精品实战案例

3. 自然语言处理 NLP 精品实战案例

这篇关于基于机器学习的工业制造缺陷分析预测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114114

相关文章

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整