极限基础:变化率在manim中的实现

2024-08-28 05:36

本文主要是介绍极限基础:变化率在manim中的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,变化率的介绍

这里我们要考虑一个函数f(x),它表示一些量,其变化为x不同。例如,也许f(x)表示x纪要。或者f(x)是汽车行驶的距离x小时。在这两个例子中,我们使用了x来表示时间。答案是肯定的x不必表示时间,但它可以生成易于可视化的示例。

我们在这里要做的是确定多快f(x)在某个时候发生变化,比如x=a.这称为瞬时变化率,有时简称为瞬时变化率f(x)在x=a.

与切线问题一样,此时我们能做的就是估计变化率。那么,让我们继续上面的例子并考虑一下f(x)作为随时间变化的事物,以及x是时间测量。再x不一定非得代表时间,但它会让解释变得更容易一些。虽然我们现在无法计算瞬时变化率,但我们可以找到平均变化率。

要计算f(x)在x=a我们需要做的就是选择另一个点,比如x,则平均变化率将为

然后,要估计x=a,我们需要做的就是选择x越来越近x=a,(不要忘记在两侧选择它们x=a).然后我们可以从中估计瞬时变化率。

1.让我们看一个例子。

假设气球中的空气量t小时数由下式给出

V\left( t \right) = {t^3} - 6{t^2} + 35

 估计 5 小时后体积的瞬时变化率。

解题思路:

我们需要做的第一件事是获得交易量平均变化率的公式。在本例中,这是

A.R.C. = \frac{​{V\left( t \right) - V\left( 5 \right)}}{​{t - 5}} = \frac{​{​{t^3} - 6{t^2} + 35 - 10}}{​{t - 5}} = \frac{​{​{t^3} - 6{t^2} + 25}}{​{t - 5}}

要估计t=5我们只需要选择 越来越近t=5.以下是tt以及这些值的平均变化率

 因此,从这个表格中可以看出,平均变化率接近 15,因此我们可以估计此时的瞬时变化率是 15。

接下来我们通过manim实现上面的例子

2.manim实现

from manim import *  class RatesofChange11(Scene):  def construct(self):  # 创建坐标系  axes = Axes(  x_range=[3, 7.5, 1],  y_range=[6, 25, 3],   y_length=6,  x_length=10,  axis_config={"color": BLUE},  ).add_coordinates()  # 定义函数  def func(x):  return x**3 - 6*x**2 + 35   # 绘制函数曲线  graph = axes.plot(func, color=RED)  graph_label = axes.get_graph_label(graph, label='f(x) = x^3 - 6x^2 + 35')  x11 = [6, 5.5, 5.2, 5.01, 5.0001, 4.999, 4.99, 4.9, 4.5, 4]  # 添加点和文本  dots = []  text_mobs = []  for x in x11:  y = func(x)  dot = Dot(axes.c2p(x, y), color=YELLOW)  label = Text(f"({x:.1f}, {y:.1f})", font_size=20).next_to(dot, DOWN)  dots.append(dot)  text_mobs.append(label)  self.add(axes)  # 绘制函数和标签  self.play(Create(graph), run_time=2)  self.play(Write(graph_label))  # 添加点和对应文本  for dot, label in zip(dots, text_mobs):  self.play(FadeIn(dot), Write(label), run_time=0.5)  self.wait(2)  # 画面切换: 创建一个新的场景来显示表格  self.switch_to_table_scene(dots, x11)  def switch_to_table_scene(self, dots, x_values):  # 计算y值  y_values = [round(self.func(x), 2) for x in x_values]  # 计算并保留两位小数  # 创建表格  table = Table(  [  [f"x", "f(x)"],  *[[f"{x:.2f}", f"{y:.6f}"] for x, y in zip(x_values, y_values)]  ],   include_outer_lines=True  ).scale(0.5)  # 表格放在画面中央  table.move_to([3,0,0]) self.clear()# 显示表格  self.play(Create(table))  self.wait(3)  def func(self, x):  return x**3 - 6*x**2 + 35  # 定义函数  

运行完整结果:https://download.csdn.net/download/qq_45449625/89683800icon-default.png?t=N7T8https://download.csdn.net/download/qq_45449625/89683800 

 

那么,这告诉我们关于t=5?让我们在上面的答案上放置一些单位。这可能有助于我们了解此时卷发生的情况。假设体积上的单位以cm^3 为单位。变化率的单位(平均和瞬时)为 cm^3/hr

我们估计,在t=5体积以 15cm^3/hr 的速度变化。这意味着在t=5体积的变化方式是,如果速率是恒定的,那么一小时后气球中的空气将比 15 厘米3 时多t=5.

然而,我们在这里确实需要小心。实际上,一小时后气球中的空气可能不会增加 15 厘米3。成交量的变化速度通常不是恒定的,因此我们无法真正确定再过一小时后成交量会是多少。我们可以说的是,体积在增加,因为瞬时变化率是正的,如果我们有其他值的变化率tt我们可以比较这些数字,看看其他点的变化率是更快还是更慢。

例如,在t=4瞬时变化率为 0cm^3/hr,在t=3瞬时变化率为 -9cm^3/hr。我们将让您检查这些变化率。事实上,这是一个很好的练习,看看你是否可以建立一个值表来支持我们对这些变化率的主张。

无论如何,回到例子。在t=4变化率为零,因此此时交易量根本没有变化。这并不意味着它在未来不会改变。它只是意味着t=4音量没有变化。同样,在t=3体积减小,因为该点的变化率为负。我们也可以说,无论变化率的增加/减少方面如何,气球的体积在t=5t=5比现在的t=3因为 15 大于 9。

补充代码:

from manim import *  class RatesofChange(Scene):  def construct(self):  # 创建坐标系  """def kfunc(x):return 19-6*xgraphk = axes.plot(kfunc, color=YELLOW_A)tangent_point_x = 1  tangent_point_y = func(tangent_point_x) # 计算切线的 y 截距  y_intercept = tangent_point_y - tangent_slope * tangent_point_x  # 创建切线  tangent_line = axes.plot(lambda x: tangent_slope * x + y_intercept, color=BLUE_E, x_range=[-3, 3]) ar=Arrow(start=axes.c2p(4,9),end=[2,1,0],buff=0,color=YELLOW)ar2=Arrow(start=[1,-2.5,0],end=axes.c2p(2.7,3),buff=0)# Create a line passing through dot1 and dot2 with long endpoints to simulate infinite lengthline_infinite = Line(dot2,dot1).set_color(RED)# 添加箭头和文本  tangent_text01 = MarkupText("这是条切线。", font_size=24, color=PINK).next_to(ar,UP,buff=0)  not_tangent_text = MarkupText("割线", font_size=24).next_to(axes.c2p(1.5,2))  # 切线的斜率  tangent_slope = -4*tangent_point_x# f'(x) = -4x  """axes = Axes(  x_range=[3, 7.5,1],  y_range=[6, 25,3], y_length=6,x_length=10,axis_config={"color": BLUE},  ).add_coordinates()  # 定义函数  def func(x):  return x**3-6*x**2+35 # 绘制函数曲线  graph = axes.plot(func, color=RED)graph_label = axes.get_graph_label(graph, label='f(x) = x^3 - 6x^2+35')x11=[6,5.5,5.2,5.01,5.0001,4.999,4.99,4.9,4.5,4]f=func(4)print(f)# 切点  # 添加箭头和文本  #tangent_text = Title("Tangent Line at $(1, f(1))$",color=GOLD).shift(RIGHT) dot1=Dot(axes.c2p(1,13))self.add(dot1)td1=Text("P=(1,13)",font_size=20).next_to(dot1,DOWN)dot2=Dot(axes.c2p(2,7))td2=Text("Q=(2,7)",font_size=20).next_to(dot2,DOWN)self.add(dot2)self.add(axes)# 绘制所有元素  self.play(Create(graph),run_time=2)self.play(Write(graph_label))self.add(graph_label)self.add(td1,td2)self.wait(2)

 运行结果:

 

这篇关于极限基础:变化率在manim中的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113873

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1