极限基础:变化率在manim中的实现

2024-08-28 05:36

本文主要是介绍极限基础:变化率在manim中的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,变化率的介绍

这里我们要考虑一个函数f(x),它表示一些量,其变化为x不同。例如,也许f(x)表示x纪要。或者f(x)是汽车行驶的距离x小时。在这两个例子中,我们使用了x来表示时间。答案是肯定的x不必表示时间,但它可以生成易于可视化的示例。

我们在这里要做的是确定多快f(x)在某个时候发生变化,比如x=a.这称为瞬时变化率,有时简称为瞬时变化率f(x)在x=a.

与切线问题一样,此时我们能做的就是估计变化率。那么,让我们继续上面的例子并考虑一下f(x)作为随时间变化的事物,以及x是时间测量。再x不一定非得代表时间,但它会让解释变得更容易一些。虽然我们现在无法计算瞬时变化率,但我们可以找到平均变化率。

要计算f(x)在x=a我们需要做的就是选择另一个点,比如x,则平均变化率将为

然后,要估计x=a,我们需要做的就是选择x越来越近x=a,(不要忘记在两侧选择它们x=a).然后我们可以从中估计瞬时变化率。

1.让我们看一个例子。

假设气球中的空气量t小时数由下式给出

V\left( t \right) = {t^3} - 6{t^2} + 35

 估计 5 小时后体积的瞬时变化率。

解题思路:

我们需要做的第一件事是获得交易量平均变化率的公式。在本例中,这是

A.R.C. = \frac{​{V\left( t \right) - V\left( 5 \right)}}{​{t - 5}} = \frac{​{​{t^3} - 6{t^2} + 35 - 10}}{​{t - 5}} = \frac{​{​{t^3} - 6{t^2} + 25}}{​{t - 5}}

要估计t=5我们只需要选择 越来越近t=5.以下是tt以及这些值的平均变化率

 因此,从这个表格中可以看出,平均变化率接近 15,因此我们可以估计此时的瞬时变化率是 15。

接下来我们通过manim实现上面的例子

2.manim实现

from manim import *  class RatesofChange11(Scene):  def construct(self):  # 创建坐标系  axes = Axes(  x_range=[3, 7.5, 1],  y_range=[6, 25, 3],   y_length=6,  x_length=10,  axis_config={"color": BLUE},  ).add_coordinates()  # 定义函数  def func(x):  return x**3 - 6*x**2 + 35   # 绘制函数曲线  graph = axes.plot(func, color=RED)  graph_label = axes.get_graph_label(graph, label='f(x) = x^3 - 6x^2 + 35')  x11 = [6, 5.5, 5.2, 5.01, 5.0001, 4.999, 4.99, 4.9, 4.5, 4]  # 添加点和文本  dots = []  text_mobs = []  for x in x11:  y = func(x)  dot = Dot(axes.c2p(x, y), color=YELLOW)  label = Text(f"({x:.1f}, {y:.1f})", font_size=20).next_to(dot, DOWN)  dots.append(dot)  text_mobs.append(label)  self.add(axes)  # 绘制函数和标签  self.play(Create(graph), run_time=2)  self.play(Write(graph_label))  # 添加点和对应文本  for dot, label in zip(dots, text_mobs):  self.play(FadeIn(dot), Write(label), run_time=0.5)  self.wait(2)  # 画面切换: 创建一个新的场景来显示表格  self.switch_to_table_scene(dots, x11)  def switch_to_table_scene(self, dots, x_values):  # 计算y值  y_values = [round(self.func(x), 2) for x in x_values]  # 计算并保留两位小数  # 创建表格  table = Table(  [  [f"x", "f(x)"],  *[[f"{x:.2f}", f"{y:.6f}"] for x, y in zip(x_values, y_values)]  ],   include_outer_lines=True  ).scale(0.5)  # 表格放在画面中央  table.move_to([3,0,0]) self.clear()# 显示表格  self.play(Create(table))  self.wait(3)  def func(self, x):  return x**3 - 6*x**2 + 35  # 定义函数  

运行完整结果:https://download.csdn.net/download/qq_45449625/89683800icon-default.png?t=N7T8https://download.csdn.net/download/qq_45449625/89683800 

 

那么,这告诉我们关于t=5?让我们在上面的答案上放置一些单位。这可能有助于我们了解此时卷发生的情况。假设体积上的单位以cm^3 为单位。变化率的单位(平均和瞬时)为 cm^3/hr

我们估计,在t=5体积以 15cm^3/hr 的速度变化。这意味着在t=5体积的变化方式是,如果速率是恒定的,那么一小时后气球中的空气将比 15 厘米3 时多t=5.

然而,我们在这里确实需要小心。实际上,一小时后气球中的空气可能不会增加 15 厘米3。成交量的变化速度通常不是恒定的,因此我们无法真正确定再过一小时后成交量会是多少。我们可以说的是,体积在增加,因为瞬时变化率是正的,如果我们有其他值的变化率tt我们可以比较这些数字,看看其他点的变化率是更快还是更慢。

例如,在t=4瞬时变化率为 0cm^3/hr,在t=3瞬时变化率为 -9cm^3/hr。我们将让您检查这些变化率。事实上,这是一个很好的练习,看看你是否可以建立一个值表来支持我们对这些变化率的主张。

无论如何,回到例子。在t=4变化率为零,因此此时交易量根本没有变化。这并不意味着它在未来不会改变。它只是意味着t=4音量没有变化。同样,在t=3体积减小,因为该点的变化率为负。我们也可以说,无论变化率的增加/减少方面如何,气球的体积在t=5t=5比现在的t=3因为 15 大于 9。

补充代码:

from manim import *  class RatesofChange(Scene):  def construct(self):  # 创建坐标系  """def kfunc(x):return 19-6*xgraphk = axes.plot(kfunc, color=YELLOW_A)tangent_point_x = 1  tangent_point_y = func(tangent_point_x) # 计算切线的 y 截距  y_intercept = tangent_point_y - tangent_slope * tangent_point_x  # 创建切线  tangent_line = axes.plot(lambda x: tangent_slope * x + y_intercept, color=BLUE_E, x_range=[-3, 3]) ar=Arrow(start=axes.c2p(4,9),end=[2,1,0],buff=0,color=YELLOW)ar2=Arrow(start=[1,-2.5,0],end=axes.c2p(2.7,3),buff=0)# Create a line passing through dot1 and dot2 with long endpoints to simulate infinite lengthline_infinite = Line(dot2,dot1).set_color(RED)# 添加箭头和文本  tangent_text01 = MarkupText("这是条切线。", font_size=24, color=PINK).next_to(ar,UP,buff=0)  not_tangent_text = MarkupText("割线", font_size=24).next_to(axes.c2p(1.5,2))  # 切线的斜率  tangent_slope = -4*tangent_point_x# f'(x) = -4x  """axes = Axes(  x_range=[3, 7.5,1],  y_range=[6, 25,3], y_length=6,x_length=10,axis_config={"color": BLUE},  ).add_coordinates()  # 定义函数  def func(x):  return x**3-6*x**2+35 # 绘制函数曲线  graph = axes.plot(func, color=RED)graph_label = axes.get_graph_label(graph, label='f(x) = x^3 - 6x^2+35')x11=[6,5.5,5.2,5.01,5.0001,4.999,4.99,4.9,4.5,4]f=func(4)print(f)# 切点  # 添加箭头和文本  #tangent_text = Title("Tangent Line at $(1, f(1))$",color=GOLD).shift(RIGHT) dot1=Dot(axes.c2p(1,13))self.add(dot1)td1=Text("P=(1,13)",font_size=20).next_to(dot1,DOWN)dot2=Dot(axes.c2p(2,7))td2=Text("Q=(2,7)",font_size=20).next_to(dot2,DOWN)self.add(dot2)self.add(axes)# 绘制所有元素  self.play(Create(graph),run_time=2)self.play(Write(graph_label))self.add(graph_label)self.add(td1,td2)self.wait(2)

 运行结果:

 

这篇关于极限基础:变化率在manim中的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113873

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q