【数据仓库/数据治理】探索数据处理的两大类:OLTP与OLAP及其核心技术

本文主要是介绍【数据仓库/数据治理】探索数据处理的两大类:OLTP与OLAP及其核心技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

在现代数据处理的世界中,数据的管理和分析是商业和技术决策的关键。为满足不同的业务需求,数据处理大致分为两大类:联机事务处理(OLTP)联机分析处理(OLAP)。这两者分别适用于日常事务处理和复杂的分析操作,在数据管理中扮演着不同但互补的角色。

联机事务处理(OLTP):日常事务的基石

OLTP系统主要用于处理基本的、日常的事务操作,典型的例子包括银行交易、订单处理和库存管理等。这类系统通常依赖于传统的关系型数据库,具备以下特点:

  • 高并发性:OLTP系统支持大量用户同时执行读写操作,确保系统能在高并发情况下稳定运行。
  • 数据一致性:事务的完整性和一致性在OLTP系统中至关重要,确保数据在操作过程中不会出现错误或不一致。
  • 实时处理:OLTP系统要求快速的响应时间,以便用户能够即时获得处理结果。

这些特点使得OLTP系统成为日常业务操作的核心,支持企业实现高效的事务管理。

联机分析处理(OLAP):数据分析的利器

与OLTP不同,OLAP系统专注于支持复杂的分析操作,是数据仓库系统的主要应用。它的核心目的是提供决策支持,通过多维度的数据分析帮助用户发现数据中的规律和趋势。OLAP系统具有以下特征:

  • 多维数据分析:OLAP通过多维数据模型(如数据立方体)来组织和呈现数据,使得用户能够从不同维度切片、切块数据,获得深度分析。
  • 高性能查询:为了支持复杂的查询和分析,OLAP系统对数据进行了优化,能够在短时间内处理大规模数据查询。
  • 决策支持:OLAP系统不仅仅展示数据,还能通过聚合和分组等操作,帮助用户深入理解数据背后的业务逻辑,支持战略决策。

OLAP中的核心技术:切片、切块、旋转和钻取

在OLAP系统中,用户可以通过多种操作灵活地分析数据,以下是几种常用的技术:

  1. 切片与切块(Slice and Dice)
    1. 切片:在多维数据结构中,沿着一个维度进行切片,获取特定维度的子集数据。例如,在“贷款银行、贷款种类、时间”三个维度中,可以选择某个具体的时间点来切片,从而获得该时间点的贷款数据。
    2. 切块:切块则是在多个维度上进行分割,获取更精细的数据集。例如,可以同时选择特定的银行和时间段,得到某银行在特定时间内的贷款统计数据。
  2. 旋转(Pivoting)
    1. 旋转是指改变数据表中维度的排列方式,例如将行和列的维度互换,以不同的角度观察数据。这种操作帮助用户从多种角度分析数据,挖掘出隐藏的趋势和模式。
  3. 钻取(Drill-Down)
    1. 下钻(Drill-Down):用户可以从较高层次的维度钻取到更低层次,例如从年度数据下钻到季度,再到月份。这种方式有助于对数据进行细分,发现更详细的信息。
    2. 上卷(Roll-Up):相反,上卷操作是将数据从低层次聚合到更高层次,例如从月份聚合到季度,再到年度。这样用户可以获得数据的总体概况,有助于宏观分析。

这些操作为用户提供了灵活的分析方式,使得数据分析更加直观和有效。通过使用这些技术,企业可以在数据中发现有价值的信息,从而做出更加明智的决策。

现代工具中的OLAP应用:FineReport和FineBI

在实际应用中,像FineReport和FineBI这样的数据分析工具,通过丰富的数据钻取和关联展示功能,为用户提供了强大的OLAP支持。这些工具可以帮助企业完成数据挖掘、分析和报表生成等任务,提升业务决策的效率和准确性。

  • FineReport:通过直观的报表设计和展示功能,帮助用户快速生成各类数据报表,并提供数据钻取功能,让用户在不同维度上深入探索数据。
  • FineBI:提供强大的商业智能(BI)分析能力,支持多维数据建模、切片切块、钻取等操作,让用户能够全方位地了解和分析业务数据。

这篇关于【数据仓库/数据治理】探索数据处理的两大类:OLTP与OLAP及其核心技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113870

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语