【Matlab】时间序列模型(ARIMA)

2024-08-28 04:04

本文主要是介绍【Matlab】时间序列模型(ARIMA),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、示例
  • 二、代码实现----Matlab
    • 全部数据的平稳性检验
      • ADF检验
      • 图检验法
    • 划分训练集
      • 平稳性检验
      • 确定 p,q
      • 结果分析和模型检验
      • 模型预测


前言

接上一篇博客,用 Matlab 完成代码编写。
【学习笔记】时间序列模型(ARIMA)

一、示例

  • 已知一个上市公司一段时期的开盘价,最高价,最低价,收盘价等信息,要求建立模型,预测股价。
  • 这里只需要股票的收盘价(close),我们可以把数据提取出来,并划分为训练集和测试集
  • 本题我们把1-3月份的数据作为训练集,4-6月份的数据作为测试集

二、代码实现----Matlab

全部数据的平稳性检验

%% 数据读取
% 读取 CSV 文件
filename = 'ChinaBank.csv';
data = readtable(filename);% 读取文件中的两列
close_data = data.Close;
date_data = data.Date;% 一阶差分
close_dif1 = diff(close_data);
% 二阶差分
close_dif2 = diff(close_data, 2);% 创建一个新的图形窗口并设置其大小
figure('Position', [100, 100, 1200, 1000]); subplot(3, 1, 1);
plot(date_data,close_data); 
title('原始数据');
xlabel('日期');
ylabel('收盘价');% 绘制一阶差分数据
subplot(3, 1, 2);
plot(date_data(2:end), close_dif1);
title('一阶差分');
xlabel('日期');
ylabel('差分值');% 绘制二阶差分数据
subplot(3, 1, 3);
plot(date_data(3:end), close_dif2);
title('二阶差分');
xlabel('日期');
ylabel('差分值');

运行结果:

在这里插入图片描述

结果分析:

可以看出,一阶差分和二阶差分后,平稳性变好。

ADF检验

Matlab 的 adftest 函数

[h, pValue, stat, cValue] = adftest(y);

返回值解释

  1. h:检验结果

    h 是一个逻辑值,表示检验结果:

    • 1:拒绝原假设(即,时间序列是平稳的)。
    • 0:无法拒绝原假设(即,时间序列可能存在单位根或是非平稳的)。
  2. pValue:p 值

    pValue 是一个实数,表示检验统计量的 p 值。p 值越小,拒绝原假设的证据越强。通常,如果 p 值小于某个显著性水平(如 0.05),则拒绝原假设。

  3. stat:检验统计量

    stat 是一个实数,表示 ADF 检验的统计量。这个值用于与临界值进行比较,以决定是否拒绝原假设。

  4. cValue:临界值

    cValue 是一个向量,包含不同显著性水平(如 1%、5%、10%)下的临界值。用于与统计量 stat 进行比较。

Matlab 代码

% 进行ADF检验
[h, pValue, stat, cValue] = adftest(close_data);% 显示结果
disp(['ADF 检验结果: ', num2str(h),' ','p 值: ', num2str(pValue),' ','统计量: ', num2str(stat),' ','临界值: ', mat2str(cValue)]);

运行结果:

在这里插入图片描述

结果分析:

  • ADF 检验结果为 0,则无法拒绝原假设,表示时间序列可能是非平稳的。
  • p 值为 0.96618,大于 0.05,无法拒绝原假设。
  • 统计量为 1.485,大于临界值 -1.9416,无法拒绝原假设。

图检验法

  1. 原始数据
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(close_data, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(close_data, 20);
title('偏自相关函数(PACF)');

运行结果:

在这里插入图片描述
结果分析:

ACF中,大部分的值没有落在置信区间内,所以不具有平稳性。

  1. 一次差分
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(close_dif1, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(close_dif1, 20);
title('偏自相关函数(PACF)');

运行结果:

在这里插入图片描述
结果分析:

由图形可以看出,大部分的值都落在了置信区间内。

划分训练集

train = close_data(1:62);
test = close_data(63:127);

平稳性检验

ADF检验

  1. 原训练集
% 进行ADF检验
[h, pValue, stat, cValue, reg] = adftest(train);% 显示结果
disp(['ADF 检验结果: ', num2str(h),' ','p 值: ', num2str(pValue),' ','统计量: ', num2str(stat),' ','临界值: ', mat2str(cValue)]);

运行结果:

在这里插入图片描述
平稳性并不理想,所以考虑一次差分。(和python运行出来的结果不一致,此处存疑

  1. 训练集进行一次差分
train_dif1 = diff(train);
% 进行ADF检验
[h, pValue, stat, cValue, reg] = adftest(train_dif1);% 显示结果
disp(['ADF 检验结果: ', num2str(h),' ','p 值: ', num2str(pValue),' ','统计量: ', num2str(stat),' ','临界值: ', mat2str(cValue)]);

运行结果:
在这里插入图片描述
通过平稳性检验。

图检验法

  1. 原训练集
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(train, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(train, 20);
title('偏自相关函数(PACF)');

运行结果:

在这里插入图片描述

平稳性并不理想,所以考虑一次差分。(和python运行出来的结果不一致,此处存疑

  1. 训练集进行一次差分
% 计算并绘制自相关函数(ACF)
figure('Position', [100, 100, 1200, 700]); 
subplot(2, 1, 1);
autocorr(train_dif1, 20);
title('自相关函数(ACF)');% 计算并绘制偏自相关函数(PACF)
subplot(2, 1, 2);
parcorr(train_dif1, 20);
title('偏自相关函数(PACF)');

运行结果:
在这里插入图片描述

通过平稳性检验。

确定 p,q

1. 相关函数法

由训练集一次差分后的 ACF 和 PACF 图可以看出,呈现不规则衰减,p 、q的值难以直接判断。

2. AIC、BIC准则

% 定义候选模型阶数范围
maxP = 8;
maxQ = 8;
n = length(train);% 初始化结果存储
aicValues = NaN(maxP, maxQ);
bicValues = NaN(maxP, maxQ);% 迭代计算所有候选模型的AIC和BIC值
for p = 0:maxPfor q = 0:maxQtryMdl = arima(p,1,q);[~,~,logL] = estimate(Mdl, train, 'Display', 'off');numParam = p + q + 1; % p个AR参数, q个MA参数, 1个差分项[aicValues(p+1, q+1),bicValues(p+1, q+1)] = aicbic(logL, numParam, n);catch% 忽略无法估计的模型continue;endend
end% 找到AIC最小值对应的(p, q)
[minAIC, idxAIC] = min(aicValues(:));
[pAIC, qAIC] = ind2sub(size(aicValues), idxAIC);
pAIC = pAIC - 1;
qAIC = qAIC - 1;% 找到BIC最小值对应的(p, q)
[minBIC, idxBIC] = min(bicValues(:));
[pBIC, qBIC] = ind2sub(size(bicValues), idxBIC);
pBIC = pBIC - 1;
qBIC = qBIC - 1;fprintf('AIC选择的模型阶数: p = %d, q = %d\n', pAIC, qAIC);
fprintf('BIC选择的模型阶数: p = %d, q = %d\n', pBIC, qBIC);

运行结果:

在这里插入图片描述
在这里插入图片描述
姑且先选择 AIC 准则的结果:p = 7,q = 6。此处存疑

结果分析和模型检验

残差序列的随机性可以通过自相关函数法来检验,即做残差的自相关函数图

model = arima(7,1,6);
md1 = estimate(model, train, 'Display', 'off');% 检查残差的自相关性
residuals = infer(md1, train);
figure;
autocorr(residuals);
title('Residuals Autocorrelation');

运行结果:

在这里插入图片描述

结果分析:从 ACF 图中可以看出残差之间独立性比较高。

模型预测

numPeriods = length(test);
[Y, YMSE] = forecast(md1, numPeriods, 'Y0', train);origin_close = close_data(1:127);
origin_date = date_data(1:127);
% 绘制预测结果与真实值的比较
figure('Position', [100, 100, 1200, 700]); 
plot(origin_date,origin_close, test_date, Y);
legend('真实值','预测值');
title('ARIMA 模型预测结果');
xlabel('时间');
ylabel('值');

运行结果:

在这里插入图片描述
向后预测了三个月的数据。

这篇关于【Matlab】时间序列模型(ARIMA)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1113669

相关文章

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基

JavaScript时间戳与时间的转化常用方法

《JavaScript时间戳与时间的转化常用方法》在JavaScript中,时间戳(Timestamp)通常指Unix时间戳,即从1970年1月1日00:00:00UTC到某个时间点经过的毫秒数,下面... 目录1. 获取当前时间戳2. 时间戳 → 时间对象3. 时间戳php → 格式化字符串4. 时间字符