【书生大模型实战营】茴香豆:企业级知识问答工具实践

2024-08-27 20:28

本文主要是介绍【书生大模型实战营】茴香豆:企业级知识问答工具实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

茴香豆:企业级知识问答工具实践

  • 【书生大模型实战营】茴香豆:企业级知识问答工具实践
    • 任务
    • 茴香豆本地标准版搭建
      • 一般使用
      • 联网
      • 远程大模型
    • 闯关任务

【书生大模型实战营】茴香豆:企业级知识问答工具实践

茴香豆Demo:地址

任务

在 InternStudio 中利用 Internlm2-7b 搭建标准版茴香豆知识助手,并使用 Gradio 界面完成 2 轮问答(问题不可与教程重复,作业截图需包括 gradio 界面问题和茴香豆回答)。知识库可根据根据自己工作、学习或感兴趣的内容调整,如金融、医疗、法律、音乐、动漫等(优秀学员必做)。

茴香豆本地标准版搭建

一般使用

环境:30% A100,Cuda 12.2

使用studio-conda -o internlm-base -t huixiangdou激活环境。

然后clone相关仓库并切换分支:

git clone https://github.com/internlm/huixiangdou && cd huixiangdou
git checkout 79fa810

安装相关依赖:

apt update
apt install python-dev libxml2-dev libxslt1-dev antiword unrtf poppler-utils pstotext tesseract-ocr flac ffmpeg lame libmad0 libsox-fmt-mp3 sox libjpeg-dev swig libpulse-dev
pip install BCEmbedding==0.1.5 cmake==3.30.2 lit==18.1.8 sentencepiece==0.2.0 protobuf==5.27.3 accelerate==0.33.0
pip install -r requirements.txt

复制相关的模型:

ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/model/bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/model/bce-reranker-base_v1
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/model/internlm2-chat-7b

然后更改配置文件config.ini,在huixiangdou文件夹下,执行如下命令更改配置文件:

sed -i '9s#.*#embedding_model_path = "/root/model/bce-embedding-base_v1"#' /root/Project/huixiangdou/config.ini
sed -i '15s#.*#reranker_model_path = "/root/model/bce-reranker-base_v1"#' /root/Project/huixiangdou/config.ini
sed -i '43s#.*#local_llm_path = "/root/model/internlm2-chat-7b"#' /root/Project/huixiangdou/config.ini

进入创建的huixiangdou,创建repodir文件夹,将两个仓库clone到这里:

git clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou
git clone https://github.com/open-mmlab/mmpose    --depth=1 repodir/mmpose

然后创建一个工作目录workdir,并执行如下命令:

python3 -m huixiangdou.service.feature_store

其中:repodir 文件夹,用来储存知识库原始文档,文件夹 workdir 用来存放原始文档特征提取到的向量知识库。

结果为:
在这里插入图片描述
正例和反例信息在resource文件夹下。

每次更新原始知识文档和正反例,都需要重新运行 python3 -m huixiangdou.service.feature_store命令进行向量知识库的重新创建和应答阈值的更新。

配置文件中的 work_dir参数指定了特征提取后向量知识库存放的位置。如果有多个知识库快速切换的需求,可以通过更改该参数实现。

使用如下命令和茴香豆在命令行进行交互:

python3 -m huixiangdou.main --standalone

然后询问mmpose怎么使用,得到的回复如下:
在这里插入图片描述
然后尝试使用gradio创建可视化界面:

python3 -m huixiangdou.gradio

然后询问mmpose相关的问题,结果如下:
在这里插入图片描述

联网

进入serper注册一个账号,然后进入API-Key界面,复制自己的 API-key。

替换 /huixiangdou/config.ini中的 ${YOUR-API-KEY} 为自己的API-key:

[web_search]
engine = "serper"
serper_x_api_key = "YOUR-API-KEY-HERE"
domain_partial_order = ["arxiv.org", "openai.com", "pytorch.org", "readthedocs.io", "nvidia.com", "stackoverflow.com", "juejin.cn", "zhuanlan.zhihu.com", "www.cnblogs.com"]
save_dir = "logs/web_search_result"

其中 domain_partial_order可以设置网络搜索的范围。

然后运行gradio界面,问它Pytorch怎么安装,虽然在gradio里面依然没有显示正确结果,但是在save_dir变量对应的文件夹下面,有它搜索的文件:
在这里插入图片描述

远程大模型

远程向量&重排序模型的修改:SiliconFlow创建账号,然后进入体验中心,创建个人 API 密匙,复制将其填入huixiangdou/config.ini 的api_token中。

大模型的修改:首先修改 huixiangdou/config.ini 本地和远程LLM 开关:

[worker]
enable_web_search = 0
enable_sg_search = 1

然后更改remote_ 相关配置,填写 API key、模型类型等参数,茴香豆支持 OpenAI 的 API格式调用:

remote_type = "kimi"
remote_api_key = "YOUR-API-KEY-HERE"
remote_llm_max_text_length = 128000
remote_llm_model = "auto"

闯关任务

以中国的诗词构建知识库,使用chinese-poetry作为知识来源:

git clone https://github.com/chinese-poetry/chinese-poetry.git

clone到repodir文件夹,然后进行知识更新:

python3 -m huixiangdou.service.feature_store

但茴香豆似乎只对README.md进行了处理,下面的json都没有读取:
在这里插入图片描述
于是选取其中的元曲作为知识库,只在文件夹中放元曲的内容,然后进行知识更新。

先看一下没有加载知识库之前的模型回答:
在这里插入图片描述
在这里插入图片描述
然后我们创建一个元曲.md文件,茴香豆只能识别md或者txr,json文件无法识别,将这两首曲放上去,然后进行知识库更新。

# 元曲
## 关汉卿
(1)诈妮子调风月・胜葫芦
怕不依随蒙君一夜恩,争奈忒达地、忒知根,兼上亲上成亲好对门。
觑了他兀的模样,这般身分。
若脱过这好郎君。## 马致远
(1)邯郸道省悟黄粱梦・煞尾
你正果正是修行果,你灾咎皆因我度脱。
早则绝忧愁、没恼聒,行处行,坐处坐,闲处闲,陀处陀。
屈着指,自数过,真神仙,是七座,添伊家,总八个。
道与哥哥,非是风魔,这个爱吃酒的钟离便是我。## 郑光祖
(1)虎牢关三战吕布・那吒令
不是这个张冀德,我觑吕温侯似等闲;(关末云)他使一枝方天画杆戟,好生利害也。
(正末唱)则我这条丈八矛,将方天戟来小看。
(关末云)骑一匹卷毛赤兔马,好生奔劣也。
(正末唱)跨下这匹豹月乌,不剌刺把赤兔马来当翻。
(刘末云)破吕布凭着你些甚么那?(正末唱)凭着我这捉将手、挟人惯,两条臂有似的这栏关。

最终的结果为:
在这里插入图片描述
在这里插入图片描述

但有时候不太稳定,有时候可以从知识库里面找,有时候又没有。

这篇关于【书生大模型实战营】茴香豆:企业级知识问答工具实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1112690

相关文章

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

MySql match against工具详细用法

《MySqlmatchagainst工具详细用法》在MySQL中,MATCH……AGAINST是全文索引(Full-Textindex)的查询语法,它允许你对文本进行高效的全文搜素,支持自然语言搜... 目录一、全文索引的基本概念二、创建全文索引三、自然语言搜索四、布尔搜索五、相关性排序六、全文索引的限制七

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4: