有效提高媒体曝光率,智能推荐为什么是“最大的计算系统之一”?

2024-08-27 13:04

本文主要是介绍有效提高媒体曝光率,智能推荐为什么是“最大的计算系统之一”?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导语:我认为很少有人意识到,推荐系统是世界上构想过的最大的计算系统之一。——Jensen Huang



在信息过载的时代背景下,智能推荐系统已广泛应用于电子商务、社交媒体、新闻资讯、视频音乐、旅游出行等领域,为用户提供更加精准和高效的信息获取途径。

一、引言

智能推荐,简而言之,是一种利用机器学习和数据挖掘技术,对推荐的内容或物品进行分析和描述,根据用户的浏览历史、点击记录、购买行为、搜索关键词等历史数据和行为模式来构建用户画像,进而自动向用户推荐个性化、相关度高的产品、服务或内容的人工智能技术。

对于新闻媒体行业来说,智能推荐系统可以实时跟踪新闻动态,根据用户的兴趣变化及时、精准地更新推荐内容,有助于提高新闻的覆盖率和传播效果,增强用户对新闻平台的满意度和留存率,带来更多的策略优化、商业变现机会。

二、媒体行业案例

随着 OTT 等新兴模式崛起,IPTV 的传统市场地位受到严重冲击,面临资源整合、内容服务创新、用户娱乐方式转变等难题。

1.案例背景

某品牌 IPTV 在业务稳步发展、用户体量逐渐增加之际,发现传统单一的人工运营模式难以满足日益扩大的差异化需求,在全媒体生产、多终端传播、海量内容开发、媒体数字化迭代及运营能力精细化等方面,均提出了更为严格的要求,亟需借助推荐算法进一步提高内容推送的精准度和时效性。

2.战略合作

为了构建更加先进的融合传播技术支撑体系,某品牌 IPTV 与百度智能云一念达成战略合作,依托云智一体媒体核心技术,建立以智能推荐系统为核心的智能推荐体系。

百度智能云一念·智能推荐平台,是基于百度大模型能力打造的搜推一体化智能推荐平台,为企业级客户提供个性化推送,用于图文资讯、商品购买、视频推荐等多种业务场景,帮助企业提高用户经营能力,提升用户活跃度、留存率和产品付费转化。智能推荐平台于 2022 年上线服务了金融、媒体、汽车等行业多个头部客户,并受中国信息通信研究院邀请,核心参编《智能推荐平台技术要求和测试方法》。

关键技术:

    • 协同过滤:基于用户行为或兴趣相似性的推荐原理。

    • 内容基推荐:依据物品内容特征与用户偏好的匹配度进行推荐。

    • 混合推荐:结合多种推荐策略,提升推荐效果。

    • 深度学习在推荐中的应用:介绍深度学习如何增强推荐系统的个性化与精准度。

3.合作效果

某 IPTV 和百度智能云一念的智能推荐引擎合作,把 AI 应用于媒体业务全流程,通过智能媒资管理、智能内容生产和智能媒体经营三个方面的支持,满足媒体智能化在不同场景下的需求。动态自学习算法能力全面升级了智能推荐的能力和效果,将大屏智能推荐和运营指标深度融合,推动了人工运营转向智能自动化运营,不仅解放了人力资源,还精细化了运营能力和各项运营指标。

数据显示,本次合作让媒体工作者摆脱大量的重复性工作,建立起了媒体和用户之间的信任感,激发了编辑人员的创作热情和精细程度。此外,促使某品牌 IPTV 的曝光点击率环比提升 50%以上、付费订阅提升 20%以上,搭建了数据驱动、人机协同、跨界融合、共创分享的生产范式。

三、实操步骤分享

1.数据准备

Step 1 物料数据 schema 规范

Step 2 行为数据 schema 规范

Step 3 用户数据 schema 规范(非必传)

2.创建应用

在应用管理页,单击顶部【创建应用】按钮,进入创建应用页面,依次填写应用各项参数,选择图文推荐。

点击【创建】按钮,进入创建应用提示页面,进入应用配置页面。

3.接入数据

进入应用配置页面,在数据接入选项卡下,点击数据 API 卡片右上角的【启用服务】按钮,一键开启 3 个数据接入服务。

点击【刷新状态】按钮,直到三个服务的状态都显示为“服务中”时,即可根据生成的请求地址接入数据。

(1)了解使用 SDK 方式接入数据的流程

第1步:下载代码模版,下载并解压代码模板(python 文件),请仔细阅读 readme.md 文件。

第2步:下载并替换鉴权信息,点击下载鉴权信息,并参考代码模板中 readme.md 文件进行修改。

第3步:接入数据,返回'success':true 即表明接入成功,刷新数据状态,接入必传数据即可。

(2)分别接入三类数据

Step 1 接入 csv 中的物料数据

注意:本案例脚本代码与 sdk 提供的存在差异仅供参考,需要根据实际业务使用 sdk 中的代码或者开发代码。

"""
从csv中发送物料数据给cms
"""
import os
import time
import requests
import json
import pandas as pddef post_m(dic):ctx = json.dumps(dic, ensure_ascii=False)ctx = ctx.encode("utf-8")rex = requests.post(url, ctx, headers=headers)return rexurl = "http://airec.baidu.com/airec/api/1-s6r5gitg/omni/cms/batch-sync"
ak = "f5695cc1c9544ccd9088b29b417d395b"headers = {"Content-Type": "application/json", "X-Gw-Ak": ak}
cmsdata = pd.read_csv('/Users/wangxuecong01/Desktop/1产品管理/1智能推荐引擎/演示数据/CMSdemo.csv')for idx, data in cmsdata.iterrows():demo_cms= [{"nid": str(data['nid']),"site_name":data['site_name'],"title":data['title'],"content":data['content'],"mthid":str(data['mthid']),"publish_time":data['publish_time'],"att":[data['att']],"status":data['status'],"ts":data['ts']}]begin = time.time()rex = post_m(demo_cms)end = time.time()print("using time: {}, status {}, ret content: {}".format(round(end - begin, 6), rex.status_code, rex.text))

Step 2 接入 csv 中的用户数据

"""
发送用户数据给ums
"""import os
import time
import requests
import json
import pandas as pddef post_m(dic):ctx = json.dumps(dic, ensure_ascii=False)ctx = ctx.encode("utf-8")rex = requests.post(url, ctx, headers=headers)return rexurl = "http://airec.baidu.com/airec/api/1-fd8wpxd0/omni/ums/batch-sync"
ak = "f5695cc1c9544ccd9088b29b417d395b"headers = {"Content-Type": "application/json", "X-Gw-Ak": ak}umsdata = pd.read_csv('/Users/文件路径/演示数据/UMSdemo.csv')
for idx, data in umsdata.iterrows():demo_ums = [{"uid":str(data['uid'])}]begin = time.time()rex = post_m(demo_ums)end = time.time()print("using time: {}, status {}, ret content: {}".format(round(end - begin, 6), rex.status_code, rex.text))

Step 3 接入 csv 中的用户数据

"""发送用户数据给ums"""import osimport timeimport requestsimport jsonimport pandas as pddef post_m(dic):ctx = json.dumps(dic, ensure_ascii=False)ctx = ctx.encode("utf-8")rex = requests.post(url, ctx, headers=headers)return rexurl = "http://airec.baidu.com/airec/api/1-fd8wpxd0/omni/ims/batch-sync"ak = "f5695cc1c9544ccd9088b29b417d395b"headers = {"Content-Type": "application/json", "X-Gw-Ak": ak}imsdata = pd.read_csv('/文件路径演示数据/IMSdemo.csv')for idx, data in imsdata.iterrows():demo_ims = [{"nid":str(data['nid']),"uid":str(data['uid']),"event":data['event'],"ts":data['ts']}]begin = time.time()rex = post_m(demo_ims)end = time.time()print("using time: {}, status {}, ret content: {}".format(round(end - begin, 6), rex.status_code, rex.text)
(3)验证是否成功接入数据

在配置应用页面基础信息卡片查看数据接入条数是否符合预期。

4.服务调用

Step 1 启用服务

进入智能推荐引擎配置页面,在服务调用选项卡下点击推荐 API 卡片【启用】按钮,开启需要调用的服务。

点击【刷新状态】按钮,直到服务的状态都显示为“服务中”时,即可根据生成的请求地址调用接口。

Step 2 了解调用流程

第1步:下载代码模版,下载并解压代码模板(python 文件),请仔细阅读 readme.md 文件。

第2步:下载并替换鉴权信息,点击下载鉴权信息,并参考代码模板中 readme.md 文件进行修改。

第3步:调用服务,获取返回的推荐结果。

第4步:验证结果,正确返回值类似, status 值应为 200。

Step 3 开始调用接口

调用个性化接口

"""个性化推荐接口"""import osimport timeimport requestsimport jsondef post_m(dic):rex = requests.get(url, dic, headers=headers)return rexurl = "http://10.137.16.168:8081/airec/api/3-zo179t-l/rec/p_rec"ak = "f5695cc1c9544ccd9088b29b417d395b"headers = {"Content-Type": "application/json", "X-Gw-Ak": ak}body = {"uid": "uid_1","req_cnt": 20}begin = time.time()rex = post_m(body)end = time.time()print("using time: {}, status {}, ret content: {}".format(round(end - begin, 6), rex.status_code, rex.text))

5.模拟体验

在应用列表页面选择相应的应用点击【配置】按钮进入配置页面,切换到服务调用页面,点击【模拟体验 demo】按钮。

(1)体验个性化 PC 端推荐

点击【刷新】按钮可以浏览推荐内容,点击【阅读(曝光)】、【点击】、【评论】、【收藏】、【转发】按钮可以模拟用户的点击行为。

每次点击都会生成一条行为数据,可用于给当前用户推荐。

查看用户兴趣点变化趋势:点击模拟用户的兴趣点可以查看该兴趣点(标签)在每天的变化趋势。

查看推荐内容分布和用户兴趣分布是否吻合,或者查询模拟行为记录。

(2)体验手机端个性化推荐

pc demo 页面点击【二维码】图标弹出二维码页面,选择模拟用户,手机微信或者其他应用扫一扫打开 H5 页面。

下拉刷新可以浏览推荐更多的内容,可以点击【阅读(曝光)】、【点击】、【评论】、【收藏】、【转发】按钮模拟用户的点击行为,每次点击都会生成一条行为数据用于给当前用户推荐,暂不支持取消行为。

同样,可以上滑查看历史推荐内容。

四、总结

智能搜推引擎针对金融、互联网、传媒等行业私域流量分发场景,提供内容资讯、商品和媒资物料的个性化搜索推荐服务,可显著提高客户端用户活跃度、留存及收益。

想进一步了解推荐引擎的使用等问题,可以填写表单百度智能云一念——产品咨询 ,领取更多专属福利。





推荐阅读

薅羊毛!!一分钟快速领取某云平台内容审核免费测试资源!_百度的文本审核免费-CSDN博客

首例“AI声音侵权案”宣判!聊聊怎么调用API接入百度内容审核平台_百度ai声音-CSDN博客

百度云智能媒体内容分析一体机(MCA)建设_百度内容解析组-CSDN博客

百度“文心•跨模态大模型”又有新动态,支持内容分析时输出自定义标签库_百度模型文心实现图片描边-CSDN博客

扎克伯格说AI会让推荐系统变得更强大?一文读懂什么是智能推荐系统-CSDN博客

这篇关于有效提高媒体曝光率,智能推荐为什么是“最大的计算系统之一”?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1111740

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java SWT库详解与安装指南(最新推荐)

《JavaSWT库详解与安装指南(最新推荐)》:本文主要介绍JavaSWT库详解与安装指南,在本章中,我们介绍了如何下载、安装SWTJAR包,并详述了在Eclipse以及命令行环境中配置Java... 目录1. Java SWT类库概述2. SWT与AWT和Swing的区别2.1 历史背景与设计理念2.1.

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Java日期类详解(最新推荐)

《Java日期类详解(最新推荐)》早期版本主要使用java.util.Date、java.util.Calendar等类,Java8及以后引入了新的日期和时间API(JSR310),包含在ja... 目录旧的日期时间API新的日期时间 API(Java 8+)获取时间戳时间计算与其他日期时间类型的转换Dur

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

Windows 系统下 Nginx 的配置步骤详解

《Windows系统下Nginx的配置步骤详解》Nginx是一款功能强大的软件,在互联网领域有广泛应用,简单来说,它就像一个聪明的交通指挥员,能让网站运行得更高效、更稳定,:本文主要介绍W... 目录一、为什么要用 Nginx二、Windows 系统下 Nginx 的配置步骤1. 下载 Nginx2. 解压

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

使用Python实现Windows系统垃圾清理

《使用Python实现Windows系统垃圾清理》Windows自带的磁盘清理工具功能有限,无法深度清理各类垃圾文件,所以本文为大家介绍了如何使用Python+PyQt5开发一个Windows系统垃圾... 目录一、开发背景与工具概述1.1 为什么需要专业清理工具1.2 工具设计理念二、工具核心功能解析2.

Linux系统之stress-ng测压工具的使用

《Linux系统之stress-ng测压工具的使用》:本文主要介绍Linux系统之stress-ng测压工具的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、理论1.stress工具简介与安装2.语法及参数3.具体安装二、实验1.运行8 cpu, 4 fo