Spark RDD、DataFrame、DataSet区别和联系

2024-08-27 12:48

本文主要是介绍Spark RDD、DataFrame、DataSet区别和联系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得Spark SQL可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。DataFrame多了数据的结构信息,即schema。RDD是分布式的Java对象的集合。DataFrame是分布式的Row对象的集合。DataFrame除了提供了比RDD更丰富的算子以外,更重要的特点是提升执行效率、减少数据读取以及执行计划的优化,比如filter下推、裁剪等。

RDD

优点:

-编译时类型安全 
 编译时就能检查出类型错误
-面向对象的编程风格 
 直接通过类名点的方式来操作数据

缺点:

-序列化和反序列化的性能开销 
 无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化.
-GC的性能开销 
 频繁的创建和销毁对象, 势必会增加GC

---------------------------------------------------------------------------------------------------------------------------

DataFrame

DataFrame引入了schema和off-heap

schema : RDD每一行的数据, 结构都是一样的,这个结构就存储在schema中。 Spark通过schema就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了。

off-heap : 意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时,就直接操作off-heap内存。由于Spark理解schema,所以知道该如何操作。

off-heap就像地盘,schema就像地图,Spark有地图又有自己地盘了,就可以自己说了算了,不再受JVM的限制,也就不再收GC的困扰了。

通过schema和off-heap,DataFrame解决了RDD的缺点,但是却丢了RDD的优点。DataFrame不是类型安全的,API也不是面向对象风格的。

---------------------------------------------------------------------------------------------------------------------------

DataSet

DataSet结合了RDD和DataFrame的优点,并带来的一个新的概念Encoder。

当序列化数据时,Encoder产生字节码与off-heap进行交互,能够达到按需访问数据的效果,而不用反序列化整个对象。Spark还没有提供自定义Encoder的API,但是未来会加入。

---------------------------------------------------------------------------------------------------------------------------

RDD和DataSet

DataSet以Catalyst逻辑执行计划表示,并且数据以编码的二进制形式被存储,不需要反序列化就可以执行sorting、shuffle等操作。

DataSet创立需要一个显式的Encoder,把对象序列化为二进制,可以把对象的scheme映射为Spark SQL类型,然而RDD依赖于运行时反射机制。

DataSet比RDD性能要好很多。


DataFrame和DataSet

Dataset可以认为是DataFrame的一个特例,主要区别是Dataset每一个record存储的是一个强类型值而不是一个Row。因此具有如下三个特点:

DataSet可以在编译时检查类型

DataSet是面向对象的编程接口。

后面版本DataFrame会继承DataSet,DataFrame是面向Spark SQL的接口。

DataFrame和DataSet可以相互转化,df.as[ElementType]这样可以把DataFrame转化为DataSet,ds.toDF()这样可以把DataSet转化为DataFrame。





这篇关于Spark RDD、DataFrame、DataSet区别和联系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111714

相关文章

Vue和React受控组件的区别小结

《Vue和React受控组件的区别小结》本文主要介绍了Vue和React受控组件的区别小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录背景React 的实现vue3 的实现写法一:直接修改事件参数写法二:通过ref引用 DOMVu

Go之errors.New和fmt.Errorf 的区别小结

《Go之errors.New和fmt.Errorf的区别小结》本文主要介绍了Go之errors.New和fmt.Errorf的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考... 目录error的基本用法1. 获取错误信息2. 在条件判断中使用基本区别1.函数签名2.使用场景详细对

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

一文带你迅速搞懂路由器/交换机/光猫三者概念区别

《一文带你迅速搞懂路由器/交换机/光猫三者概念区别》讨论网络设备时,常提及路由器、交换机及光猫等词汇,日常生活、工作中,这些设备至关重要,居家上网、企业内部沟通乃至互联网冲浪皆无法脱离其影响力,本文将... 当谈论网络设备时,我们常常会听到路由器、交换机和光猫这几个名词。它们是构建现代网络基础设施的关键组成

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

JAVA覆盖和重写的区别及说明

《JAVA覆盖和重写的区别及说明》非静态方法的覆盖即重写,具有多态性;静态方法无法被覆盖,但可被重写(仅通过类名调用),二者区别在于绑定时机与引用类型关联性... 目录Java覆盖和重写的区别经常听到两种话认真读完上面两份代码JAVA覆盖和重写的区别经常听到两种话1.覆盖=重写。2.静态方法可andro

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab