0基础学习Python路径(29)collections模块

2024-08-27 12:44

本文主要是介绍0基础学习Python路径(29)collections模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.简介

collections 是 python 的内置模块,提供了很多方便且高性能的关于集合的操作,掌握这些知识有助于提高代码的性能和可读性。

2.常用功能

2.1 namedtuple 功能详解

namedtuple() 返回一个新的元组子类,且规定了元组的元素的个数,同时除了使用下标获取元素之外,还可以通过属性直接获取。

from collections import namedtuple
User = namedtuple("User",["name", "age", "weight"])
user = User("admin", "20", "60")
name, age, weight = user
print(user[0])
print(name, age, weight)
print(user.name, user.age, user.weight)# 输出结果如下
admin
admin 20 60
admin 20 60

由以上代码可以看出,namedtuple() 相当于直接定义了一个新的类,但是这个类跟传统的定义 class 的方式又有着巨大的区别。该方式会比直接定义 class 的方式省很多空间,其次其返回值是一个 tuple,支持 tuple 的各种操场。

同时,namedtuple() 还自带两个非常好用的方法。

# 将序列直接转换为新的 tuple 对象
user = ["root", 32, 65]
user = User._make(user) 
print(user) 
# 输出 User(name='root', age=32, weight=65)# 返回一个 dict
user = User("admin", 20, 60)
print(user._asdict()) 
# 输出 OrderedDict([('name', 'admin'), ('age', 20), ('weight', 60)])

2.2 ChainMap 功能讲解

ChainMap() 可以将多个字典集合到一个字典中去,对外提供一个统一的视图。注意:该操作并是不将所有字典做了一次拷贝,实际上是在多个字典的上层又进行了一次封装而已。

from collections import ChainMapuser1 = {"name":"admin", "age":"20"}
user2 = {"name":"root", "weight": 65}
users = ChainMap(user1, user2)
print(users.maps)users.maps[0]["name"] = "tiger"
print(users.maps)for key, value in users.items():print(key, value)# 输出如下
[{'name': 'admin', 'age': '20'}, {'name': 'root', 'weight': 65}]
[{'name': 'tiger', 'age': '20'}, {'name': 'root', 'weight': 65}]
name tiger
weight 65
age 20

由此可见,如果 ChainMap() 中的多个字典有重复 key,查看的时候可以看到所有的 key,但遍历的时候却只会遍历 key 第一次出现的位置,其余的忽略。同时,我们可以通过返回的新的视图来更新原来的的字典数据。进一步验证了该操作不是做的拷贝,而是直接指向原字典。

2.3 deque 功能详解

dqueue 是 ”double-ended queue” 的简称,是一种类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop)操作。大大加快了遍历速度


from collections import deque
q = deque([1, 2, 3])
q.append('4')
q.appendleft('0')
print(q)
print(q.popleft())# 输出如下
deque(['0', 1, 2, 3, '4'])
0

2.4 Counter 功能详解

Counter 可以简单理解为一个计数器,可以统计每个元素出现的次数,同样 Counter() 是需要接受一个可迭代的对象的。

from collections import Counteranimals = ["cat", "dog", "cat", "bird", "horse", "tiger", "horse", "cat"]
animals_counter = Counter(animals)
print(animals_counter)
print(animals_counter.most_common(2))Counter({'cat': 3, 'horse': 2, 'dog': 1, 'bird': 1, 'tiger': 1})
[('cat', 3), ('horse', 2)]# 输出如下
Counter({'cat': 3, 'horse': 2, 'dog': 1, 'bird': 1, 'tiger': 1})
[('cat', 3), ('horse', 2)]

其实一个 Counter 就是一个字典,其额外提供的 most_common() 函数通常用于求 Top k 问题。

2.5 OrderedDict 功能详解

OrderedDict 是字典的子类,保证了元素的插入顺序。在 3.7 版本下,字典同样也保证了元素的插入顺序。那相比内置字典 OrderedDict 有哪些升级呢。

  • 算法上, OrderedDict 可以比 dict 更好地处理频繁的重新排序操作。在跟踪最近的访问这种场景(例如在 LRU cache)下非常适用。
  • OrderedDict 类有一个 move_to_end() 方法,可以有效地将元素移动到任一端。
from collections import OrderedDictuser = OrderedDict()
user["name"] = "admin"
user["age"] = 23
user["weight"] = 65
print(user)
user.move_to_end("name") # 将元素移动至末尾
print(user)
user.move_to_end("name", last = False) # 将元素移动至开头
print(user)# 输出如下
OrderedDict([('name', 'admin'), ('age', 23), ('weight', 65)])
OrderedDict([('age', 23), ('weight', 65), ('name', 'admin')])
OrderedDict([('name', 'admin'), ('age', 23), ('weight', 65)])

2.6 defaultdict 功能详解

defaultdict 是内置 dict 类的子类。它实现了当 key 不存在是返回默认值的功能,除此之外,与内置 dict 功能完全一样。

from collections import defaultdictdefault_dict = defaultdict(int)
default_dict["x"] = 10
print(default_dict["x"])
print(default_dict["y"])# 输出如下
10
0

注意,defaultdict 的参数必须是可操作的。比如 python 内置类型,或者无参的可调用的函数。

def getUserInfo():return {"name" : "","age" : 0}default_dict = defaultdict(getUserInfo)
admin = default_dict["admin"]
print(admin)admin["age"] = 34
print(admin)# 输出如下
{'name': '', 'age': 0}
{'name': '', 'age': 34}

上述示例我们给 defaultdict 传了一个自定义函数,当字典中不存在所取 key 时返回默认的用户信息。

这篇关于0基础学习Python路径(29)collections模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1111709

相关文章

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失

利用Python实现Excel文件智能合并工具

《利用Python实现Excel文件智能合并工具》有时候,我们需要将多个Excel文件按照特定顺序合并成一个文件,这样可以更方便地进行后续的数据处理和分析,下面我们看看如何使用Python实现Exce... 目录运行结果为什么需要这个工具技术实现工具的核心功能代码解析使用示例工具优化与扩展有时候,我们需要将

SpringBoot基础框架详解

《SpringBoot基础框架详解》SpringBoot开发目的是为了简化Spring应用的创建、运行、调试和部署等,使用SpringBoot可以不用或者只需要很少的Spring配置就可以让企业项目快... 目录SpringBoot基础 – 框架介绍1.SpringBoot介绍1.1 概述1.2 核心功能2

Python+PyQt5实现文件夹结构映射工具

《Python+PyQt5实现文件夹结构映射工具》在日常工作中,我们经常需要对文件夹结构进行复制和备份,本文将带来一款基于PyQt5开发的文件夹结构映射工具,感兴趣的小伙伴可以跟随小编一起学习一下... 目录概述功能亮点展示效果软件使用步骤代码解析1. 主窗口设计(FolderCopyApp)2. 拖拽路径

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python将字符串转换为小写字母的几种常用方法

《Python将字符串转换为小写字母的几种常用方法》:本文主要介绍Python中将字符串大写字母转小写的四种方法:lower()方法简洁高效,手动ASCII转换灵活可控,str.translate... 目录一、使用内置方法 lower()(最简单)二、手动遍历 + ASCII 码转换三、使用 str.tr

Python处理超大规模数据的4大方法详解

《Python处理超大规模数据的4大方法详解》在数据的奇妙世界里,数据量就像滚雪球一样,越变越大,从最初的GB级别的小数据堆,逐渐演变成TB级别的数据大山,所以本文我们就来看看Python处理... 目录1. Mars:数据处理界的 “变形金刚”2. Dask:分布式计算的 “指挥家”3. CuPy:GPU

Python多进程、多线程、协程典型示例解析(最新推荐)

《Python多进程、多线程、协程典型示例解析(最新推荐)》:本文主要介绍Python多进程、多线程、协程典型示例解析(最新推荐),本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定... 目录一、multiprocessing(多进程)1. 模块简介2. 案例详解:并行计算平方和3. 实现逻

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

利用Python实现可回滚方案的示例代码

《利用Python实现可回滚方案的示例代码》很多项目翻车不是因为不会做,而是走错了方向却没法回头,技术选型失败的风险我们都清楚,但真正能提前规划“回滚方案”的人不多,本文从实际项目出发,教你如何用Py... 目录描述题解答案(核心思路)题解代码分析第一步:抽象缓存接口第二步:实现两个版本第三步:根据 Fea