深度学习实用方法 - 默认的基准模型篇

2024-08-27 08:44

本文主要是介绍深度学习实用方法 - 默认的基准模型篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

序言

在深度学习的广阔领域中,选择合适的基准模型是项目成功的关键一步。深度学习模型的选择不仅取决于问题的复杂性,还深受数据结构、任务类型及领域特性的影响。从简单的统计模型如逻辑回归到复杂的深度学习架构,每一步选择都需精心考量。本文将简要概述深度学习中默认的基准模型,旨在为读者提供一个清晰的起点,以便在面对不同问题时能够迅速定位并选用最合适的模型。

默认的基准模型

  • 确定性能度量和目标后,任何实际应用的下一步是尽快建立一个合理的端到端的系统。
  • 本篇给出了一些建议,在不同情况下使用哪种算法作为第一个基准方法。我们提供了关于不同情况下使用哪种算法作为第一基准方法的建议。值得注意的是,深度学习研究进展迅速,所以本书出版后很快可能会有更好的默认算法。
  • 根据问题的复杂性,项目开始时可能无需使用深度学习。如果可以只需正确选择几个线性权重来解决问题,那么项目可以开始于一个简单的统计模型,如逻辑回归。
  • 如果问题属于 “ AI \text{AI} AI-完成’’ 类的,如对象识别,语音识别,机器翻译,等等,那么项目开始于一个合适的深度学习模型,效果会比较好。
  • 首先,根据数据的结构选择一类合适的模型。
    • 如果项目是以固定大小的向量作为输入的监督学习,那么可以使用全连接的前馈网络。
    • 如果输入有已知的拓扑结构(例如,输入是图像),那么可以使用卷积网络。
    • 在这些情况下,刚开始可以使用某种逐点线性单元( ReLU \text{ReLU} ReLU或者其扩展,如 Leaky ReLU \text{Leaky ReLU} Leaky ReLU PReLU \text{PReLU} PReLU maxout \text{maxout} maxout)。
    • 如果输入或输出是一个序列,可以使用门控循环网络( LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)。
  • 具有衰减学习率动量的 SGD \text{SGD} SGD是一个合理的优化算法选择(流行的衰减方法有,衰减到固定最低学习率的线性衰减,指数衰减,或每次发生验证错误高原时降低学习率 2 − 10 2 − 10 210 倍,这些衰减方法在不同问题上好坏不一)。另一个非常合理的选择是 Adam \text{Adam} Adam算法。 batch normalization \text{batch normalization} batch normalization对优化性能有着显著的影响,特别是对卷积网络和具有 sigmoid \text{sigmoid} sigmoid非线性函数的网络而言。虽然在最初的基准中忽略 batch normalization \text{batch normalization} batch normalization是合理的,然而当优化似乎出现问题时,应该立刻使用 batch normalization \text{batch normalization} batch normalization
  • 除非训练集包含数千万以上的样本,否则项目应该在一开始就包含一些简单的正则化。 提前终止也应该普遍采用。 Dropout \text{Dropout} Dropout也是一个很容易实现,且兼容很多模型和训练算法的良好正则化项。 batch normalization \text{batch normalization} batch normalization有时也能降低泛化误差,并且因为标准化每个变量的统计估计而带来的噪扰,可以省略 Dropout \text{Dropout} Dropout
  • 如果我们的任务和另一个被广泛研究的任务很相似,那么通过复制先前研究中已知性能良好的模型和算法,可能会得到很好的效果。甚至可以从该任务中复制一个训练好的模型。例如,通常会使用 ImageNet \text{ImageNet} ImageNet 上训练好的卷积网络的特征来解决其他计算机视觉问题 ( Girshick et al., 2015 \text{Girshick et al., 2015} Girshick et al., 2015)。
  • 一个常见问题是项目开始时是否使用无监督学习,我们将在后续篇章进一步探讨这个问题。
    • 这个问题和特定领域有关。在某些领域,比如自然语言处理,能够在很大程度上受益于无监督学习技术,如学习无监督词嵌入。
    • 在其他领域,如计算机视觉,除非是在半监督的设定下(有标签的样本数量很少) ( Kingma et al., 2014; Rasmus et al., 2015 \text{Kingma et al., 2014; Rasmus et al., 2015} Kingma et al., 2014; Rasmus et al., 2015),目前无监督学习并没有带来益处。
    • 如果应用所在环境中,无监督学习被认为是很重要的,那么将其包含在第一个端到端的基准中。否则,只有在解决无监督问题时,才第一次尝试就使用无监督学习。我们总能在之后发现初始基准过拟合的时候,加入无监督学习。

基准模型的定义

基准模型( Benchmark Model \text{Benchmark Model} Benchmark Model)通常是指在某一特定任务或数据集上表现良好,并被广泛接受作为性能评估标准的模型。它可以是简单的统计模型,如逻辑回归,也可以是复杂的深度学习模型,如卷积神经网络( CNN \text{CNN} CNN)或循环神经网络( RNN \text{RNN} RNN)。

选择默认基准模型的原则

  • 问题复杂性:
    • 对于简单问题,如线性可分的数据集,可以选择线性回归或逻辑回归等简单统计模型作为基准。
    • 对于复杂问题,如图像识别、语音识别等,通常需要选择深度学习模型作为基准,因为它们能够捕获数据中的复杂模式。
  • 数据结构:
    • 如果输入数据是固定大小的向量,可以选择全连接的前馈网络。
    • 如果输入数据具有已知的拓扑结构(如图像),则卷积网络( CNN \text{CNN} CNN)是更好的选择。
    • 对于序列数据(如文本或时间序列),可以选择循环神经网络( RNN \text{RNN} RNN)或其变种(如 LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)。
  • 性能要求:
    • 在追求高精度时,可能需要选择更复杂、参数更多的模型。
    • 在资源受限的情况下(如计算资源有限、实时性要求高),则需要选择更轻量级的模型。
  • 先前研究:
    • 如果当前任务与先前研究中的任务相似,可以复制先前研究中已知性能良好的模型和算法作为基准。
    • 通过迁移学习,可以使用在相关任务上预训练的模型作为起点,进一步调整以适应当前任务。

常见的默认基准模型

  • 图像识别:
    • 在图像识别领域,常见的默认基准模型包括 AlexNet \text{AlexNet} AlexNet VGG \text{VGG} VGG ResNet \text{ResNet} ResNet等卷积神经网络。
  • 语音识别:
    • 在语音识别领域,深度学习模型如循环神经网络( RNN \text{RNN} RNN)及其变种( LSTM \text{LSTM} LSTM GRU \text{GRU} GRU)被广泛用作基准模型。
  • 自然语言处理:
    • 在自然语言处理领域, Transformer \text{Transformer} Transformer及其变种(如 BERT \text{BERT} BERT GPT \text{GPT} GPT)已成为许多任务的默认基准模型。

总结

  • 深度学习中的默认基准模型多种多样,其选择需基于问题的具体需求和数据特性。
    • 对于简单问题,如可通过线性权重解决的情况,逻辑回归等统计模型即可满足需求。
    • 而对于复杂问题,如对象识别、语音识别等“ AI \text{AI} AI-完全”类型任务,则需采用深度学习模型,如卷积网络( CNN \text{CNN} CNN)用于图像处理,循环神经网络( RNN \text{RNN} RNN)及其变体 LSTM \text{LSTM} LSTM GRU \text{GRU} GRU用于序列数据处理。
  • 此外, Transformer \text{Transformer} Transformer模型因其在自然语言处理领域的卓越表现,也成为处理序列数据的标准架构之一。在模型优化方面,选择合适的优化算法(如 SGD \text{SGD} SGD Adam \text{Adam} Adam)和正则化策略(如 Dropout \text{Dropout} Dropout batch normalization \text{batch normalization} batch normalization)同样重要。
  • 总之,深度学习的基准模型选择需综合考虑多种因素,以达到最佳效果。

这篇关于深度学习实用方法 - 默认的基准模型篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111187

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res