回归预测|基于北方苍鹰优化核极限学习机的数据预测Matlab程序NGO-KELM 多特征输入单输出

本文主要是介绍回归预测|基于北方苍鹰优化核极限学习机的数据预测Matlab程序NGO-KELM 多特征输入单输出,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回归预测|基于北方苍鹰优化核极限学习机的数据预测Matlab程序NGO-KELM 多特征输入单输出

文章目录

  • 一、基本原理
      • 1. 基本原理
        • 核极限学习机(KELM)
      • 2. NGO-KELM回归预测流程
        • 1. 数据预处理
        • 2. 核极限学习机(KELM)模型构建
        • 3. 北方苍鹰优化(NGO)
        • 4. 模型训练与预测
        • 5. 模型评估
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

回归预测|基于北方苍鹰优化核极限学习机的数据预测Matlab程序NGO-KELM 多特征输入单输出

一、基本原理

NGO-KELM(North-Gaussian Optimization Kernel Extreme Learning Machine)结合了北方苍鹰优化(NGO)算法和核极限学习机(KELM)模型。下面是其回归预测的详细流程和基本原理:

1. 基本原理

核极限学习机(KELM)
  • 极限学习机(ELM):一种用于回归和分类的前馈神经网络,其特点是隐藏层参数随机生成并固定,仅优化输出层的权重。
  • 核方法:KELM使用核函数将输入数据映射到高维特征空间,以捕捉非线性关系。
  • 回归模型:在特征空间中,KELM模型利用核函数计算输入数据的特征映射,然后通过最小化损失函数来学习输出权重。

2. NGO-KELM回归预测流程

1. 数据预处理
  • 数据归一化:将输入数据标准化,确保模型训练稳定。
2. 核极限学习机(KELM)模型构建
  • 选择核函数:如高斯核、线性核等。核函数将输入数据映射到高维空间。
  • 计算核矩阵:基于核函数计算训练样本对的核矩阵。
  • 训练模型
    • 随机生成隐藏层的参数。
    • 利用核矩阵和真实输出,通过最小二乘法来求解输出层的权重。
3. 北方苍鹰优化(NGO)
  • 优化目标:NGO算法用于优化KELM模型的超参数,如核函数参数、隐含层的数量等。
  • NGO算法
    • 初始化:设置种群及其位置,初始化相关参数。
    • 适应度评估:评估每个个体的适应度(例如,通过交叉验证来评估模型的预测性能)。
    • 更新位置:根据适应度和优化策略更新个体的位置。
    • 迭代:重复适应度评估和位置更新,直到满足终止条件(如达到最大迭代次数或找到最佳适应度)。
4. 模型训练与预测
  • 训练:使用NGO优化后的超参数训练KELM模型,优化输出层的权重。
  • 预测:将新数据输入训练好的KELM模型,利用核函数映射和输出层权重进行预测。
5. 模型评估
  • 评估指标:如均方误差(MSE)、平均绝对误差(MAE)等,评估模型的预测性能。

总结来说,NGO-KELM结合了北方苍鹰优化算法和核极限学习机,通过优化KELM模型的超参数来提升预测性能。NGO负责优化过程,而KELM提供高效的回归模型,结合使用能够有效提高回归任务的准确性。

二、实验结果

NGO-KELM回归预测
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

四、代码获取

私信即可 30米

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

这篇关于回归预测|基于北方苍鹰优化核极限学习机的数据预测Matlab程序NGO-KELM 多特征输入单输出的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1111036

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、