Pytorch实现多层LSTM模型,并增加emdedding、Dropout、权重共享等优化

本文主要是介绍Pytorch实现多层LSTM模型,并增加emdedding、Dropout、权重共享等优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简述

本文是 Pytorch封装简单RNN模型,进行中文训练及文本预测 一文的延申,主要做以下改动:

1.将nn.RNN替换为nn.LSTM,并设置多层LSTM:

既然使用pytorch了,自然不需要手动实现多层,注意nn.RNNnn.LSTM 在实例化时均有参数num_layers来指定层数,本文设置num_layers=2

2.新增emdedding层,替换掉原来的nn.functional.one_hot向量化,这样得到的emdedding层可以用来做词向量分布式表示;

3.在emdedding后、LSTM内部、LSTM后均增加Dropout层,来抑制过拟合:

nn.LSTM内部的Dropout可以通过实例化时的参数dropout来设置,需要注意pytorch仅在两层lstm之间应用Dropout,不会在最后一层的LSTM输出上应用Dropout

emdedding后、LSTM后与线性层之间则需要手动添加Dropout层。

4.考虑emdedding与最后的Linear层共享权重:

这样做可以在保证精度的情况下,减少学习参数,但本文代码没有实现该部分。

不考虑第四条时,模型结构如下:

在这里插入图片描述

代码

模型代码:

class MyLSTM(nn.Module):  def __init__(self, vocab_size, wordvec_size, hidden_size, num_layers=2, dropout=0.5):  super(MyLSTM, self).__init__()  self.vocab_size = vocab_size  self.word_vec_size = wordvec_size  self.hidden_size = hidden_size  self.embedding = nn.Embedding(vocab_size, wordvec_size)  self.dropout = nn.Dropout(dropout)  self.rnn = nn.LSTM(wordvec_size, hidden_size, num_layers=num_layers, dropout=dropout)  # self.rnn = rnn_layer  self.linear = nn.Linear(self.hidden_size, vocab_size)  def forward(self, x, h0=None, c0=None):  # nn.Embedding 需要的类型 (IntTensor or LongTensor)        # 传过来的X是(batch_size, seq), embedding之后 是(batch_size, seq, vocab_size)  # nn.LSTM 支持的X默认为(seq, batch_size, vocab_size)  # 若想用(batch_size, seq, vocab_size)作参数, 则需要在创建self.embedding实例时指定batch_first=True  # 这里用(seq, batch_size, vocab_size) 作参数,所以先给x转置,再embedding,以便再将结果传给lstm  x = x.T  x.long()  x = self.embedding(x)  x = self.dropout(x)  outputs = self.dropout(outputs)  outputs = outputs.reshape(-1, self.hidden_size)  outputs = self.linear(outputs)  return outputs, (h0, c0)  def init_state(self, device, batch_size=1):  return (torch.zeros((self.rnn.num_layers, batch_size, self.hidden_size), device=device),  torch.zeros((self.rnn.num_layers, batch_size, self.hidden_size), device=device))

训练代码:

模型应用可以参考 Pytorch封装简单RNN模型,进行中文训练及文本预测 一文。

def start_train():  # device = torch.device("cpu")  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")  print(f'\ndevice: {device}')  corpus, vocab = load_corpus("../data/COIG-CQIA/chengyu_qa.txt")  vocab_size = len(vocab)  wordvec_size = 100  hidden_size = 256  epochs = 1  batch_size = 50  learning_rate = 0.01  time_size = 4  max_grad_max_norm = 0.5  num_layers = 2  dropout = 0.5  dataset = make_dataset(corpus=corpus, time_size=time_size)  data_loader = data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)  net = MyLSTM(vocab_size=vocab_size, wordvec_size=wordvec_size, hidden_size=hidden_size, num_layers=num_layers, dropout=dropout)  net.to(device)  # print(net.state_dict())  criterion = nn.CrossEntropyLoss()  criterion.to(device)  optimizer = optim.Adam(net.parameters(), lr=learning_rate)  writer = SummaryWriter('./train_logs')  # 随便定义个输入, 好使用add_graph  tmp = torch.randint(0, 100, size=(batch_size, time_size)).to(device)  h0, c0 = net.init_state(batch_size=batch_size, device=device)  writer.add_graph(net, [tmp, h0, c0])  loss_counter = 0  total_loss = 0  ppl_list = list()  total_train_step = 0  for epoch in range(epochs):  print('------------Epoch {}/{}'.format(epoch + 1, epochs))  for X, y in data_loader:  X, y = X.to(device), y.to(device)  # 这里batch_size=X.shape[0]是因为在加载数据时, DataLoader没有设置丢弃不完整的批次, 所以存在实际批次不满足设定的batch_size  h0, c0 = net.init_state(batch_size=X.shape[0], device=device)  outputs, (hn, cn) = net(X, h0, c0)  optimizer.zero_grad()  # y也变成 时间序列*批次大小的行数, 才和 outputs 一致  y = y.T.reshape(-1)  # 交叉熵的第二个参数需要LongTorch  loss = criterion(outputs, y.long())  loss.backward()  # 求完梯度之后可以考虑梯度裁剪, 再更新梯度  grad_clipping(net, max_grad_max_norm)  optimizer.step()  total_loss += loss.item()  loss_counter += 1  total_train_step += 1  if total_train_step % 10 == 0:  print(f'Epoch: {epoch + 1}, 累计训练次数: {total_train_step}, 本次loss: {loss.item():.4f}')  writer.add_scalar('train_loss', loss.item(), total_train_step)  ppl = np.exp(total_loss / loss_counter)  ppl_list.append(ppl)  print(f'Epoch {epoch + 1} 结束, batch_loss_average: {total_loss / loss_counter}, perplexity: {ppl}')  writer.add_scalar('ppl', ppl, epoch + 1)  total_loss = 0  loss_counter = 0  torch.save(net.state_dict(), './save/epoch_{}_ppl_{}.pth'.format(epoch + 1, ppl))  writer.close()  return net, ppl_list

这篇关于Pytorch实现多层LSTM模型,并增加emdedding、Dropout、权重共享等优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110887

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S