【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现

2024-08-27 03:58

本文主要是介绍【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每次时间久了算法就会淡忘,温故耗时,故做下整理,方便日后取材。

参考网址:

        原理性讲解:https://www.toutiao.com/a6540828594954830340/ 

        基于as3的代码:https://blog.csdn.net/sjt223857130/article/details/77199601

        堆优化理解:https://www.cnblogs.com/jason2003/p/7222182.html

        基于C++的代码:https://blog.csdn.net/qq_35644234/article/details/60870719

        相关注释:https://www.cnblogs.com/zzzPark/p/6060780.html

        代码参考:https://blog.csdn.net/u013052238/article/details/80273042

此文主要讲跨地图间的最短路径,AI 寻路参考 A* 算法:https://blog.csdn.net/u013052238/article/details/53375860,以及A*算法的优化:https://blog.csdn.net/u013052238/article/details/78126019

 

一、以下图作为多地图顶点:

二、地图数据字典配置简要设置如下:

{"A": {"B": {"len": 6},"C": {"len": 3}},"B": {"A": {"len": 6},"C": {"len": 2},"D": {"len": 5}},"C": {"A": {"len": 3},"B": {"len": 2},"D": {"len": 3},"E": {"len": 4}},"D": {"B": {"len": 5},"C": {"len": 3},"E": {"len": 2},"F": {"len": 3}},"E": {"C": {"len": 4},"D": {"len": 2},"F": {"len": 5}},"F": {"D": {"len": 3},"E": {"len": 5}}
}

三、为地图设置Vo类,这里简单设置MapVo类,带有mapId属性(如上的A~F顶点)


/**顶点地图数据 */
class MapVo {public mapID: string = "";
}

四、新建地图数据类存储对应矩阵的相关数据,这里设置MGraph(邻接矩阵)类:

/**邻接矩阵 */
class MGraph {/**邻接矩阵数组 */public edgeMatrixList: number[][];/**顶点数 */public pointNumber: number;/**存放顶点信息 */public mapDataList: MapVo[];public constructor() {this.edgeMatrixList = [];this.mapDataList = [];this.pointNumber = 0;}
}

五、新建类CrossMap初始化地图数据:

class CrossMap {/**地图配置表数据 */private gMapSource: any;/**INFINITY: 无穷大 */private INFINITY: number = 999999;/**邻接矩阵数据 */private gMGraph: MGraph;public constructor(mapSourcelist: any) {this.gMapSource = mapSourcelist;this.gMGraph = new MGraph();this.gMGraph.pointNumber = Object.keys(this.gMapSource).length;for (let point in this.gMapSource) {let _mapVo: MapVo = new MapVo();this.gMGraph.mapDataList.push(_mapVo);_mapVo.mapID = point;}//建立图的邻接矩阵for (let i: number = 0; i < this.gMGraph.pointNumber; i++) {if (!this.gMGraph.edgeMatrixList[i]) {this.gMGraph.edgeMatrixList[i] = [];}for (let j: number = 0; j < this.gMGraph.pointNumber; j++) {//计算i到j的权值let mapI: string = this.gMGraph.mapDataList[i].mapID;let mapJ: string = this.gMGraph.mapDataList[j].mapID;if (this.gMapSource[mapI]) {if (this.gMapSource[mapI][mapJ]) {				//判断地图I到地图J能不能走通this.gMGraph.edgeMatrixList[i][j] = this.gMapSource[mapI][mapJ].len;//权值设为配置// this.gMGraph.edgeMatrixList[i][j] = 1;	//默认给权值都为1continue;}}this.gMGraph.edgeMatrixList[i][j] = this.INFINITY;}}console.log("图的邻接矩阵为:", this.gMGraph.edgeMatrixList);/**导出路径数据 */this.exportPath();}/**保存搜索完后所有相关的路径字典 */private allPathDic: { [mapId: string]: string[] } = {};private exportPath(){......}
}

获得地图的邻接矩阵数据如下:

六、开始迪杰斯特拉算法查找各个点距离其他点的最短路径:

/**保存所有路径字典 */private allPathDic: { [mapId: string]: string[] } = {};private exportPath() {let time = egret.getTimer();let pointNum: number = this.gMGraph.pointNumber;for (let i: number = 0; i < pointNum; i++) {this.dijkstra(i, this.gMGraph);}console.log("跨地图数据生成耗时:" + (egret.getTimer() - time) + "ms");}private dijkstra(sourcePoint: number, _MGraph: MGraph) {let dist: number[] = [];					//从原点sourcePoint到其他的各定点当前的最短路径长度let path: number[] = [];					//path[i]表示从原点到定点i之间最短路径的前驱节点let selectList: number[] = [];  			//选定的顶点的集合let minDistance, point = 0;for (let i = 0; i < _MGraph.pointNumber; i++) {dist[i] = _MGraph.edgeMatrixList[sourcePoint][i];       		//距离初始化selectList[i] = 0;                        						//selectList[]置空  0 表示 i 不在selectList集合中if (_MGraph.edgeMatrixList[sourcePoint][i] < this.INFINITY) {   //路径初始化path[i] = sourcePoint;} else {path[i] = -1;}}selectList[sourcePoint] = 1;                  				//原点编号sourcePoint放入selectList中path[sourcePoint] = 0;for (let i = 0; i < _MGraph.pointNumber; i++) {             //循环直到所有顶点的最短路径都求出minDistance = this.INFINITY;                    		//minDistance置最小长度初值for (let j = 0; j < _MGraph.pointNumber; j++)        	//选取不在selectList中且具有最小距离的顶点pointif (selectList[j] == 0 && dist[j] < minDistance) {point = j;minDistance = dist[j];}selectList[point] = 1;                       		 	//顶点point加入selectList中for (let j = 0; j < _MGraph.pointNumber; j++)        	//修改不在selectList中的顶点的距离if (selectList[j] == 0)if (_MGraph.edgeMatrixList[point][j] < this.INFINITY && dist[point] + _MGraph.edgeMatrixList[point][j] < dist[j]) {dist[j] = dist[point] + _MGraph.edgeMatrixList[point][j];path[j] = point;}}this.putBothpath(_MGraph, dist, path, selectList, _MGraph.pointNumber, sourcePoint);//获取路径}private putBothpath(_MGraph: MGraph, dist: number[], path: number[], selectList: number[], pointNumber: number, sourcePoint: number) {for (let i = 0; i < pointNumber; i++) {if (selectList[i] == 1 && dist[i] < this.INFINITY) {/**路径点列表 */let pathVexsList: string[] = [];pathVexsList.push(_MGraph.mapDataList[sourcePoint].mapID);	//起点this.findPath(_MGraph, path, i, sourcePoint, pathVexsList);pathVexsList.push(_MGraph.mapDataList[i].mapID);			//终点/**测试 */let pathStr: string = "";for (let j: number = 0; j < pathVexsList.length; j++) {pathStr += pathVexsList[j];if (j != pathVexsList.length - 1) {						//不是结尾就加间隔符pathStr += "-";}}/**测试 */let _pathKey: string = _MGraph.mapDataList[sourcePoint].mapID + "-" + _MGraph.mapDataList[i].mapID;if (!this.allPathDic[_pathKey]) {							//不存在this.allPathDic[_pathKey] = pathVexsList;}console.log("从 " + _MGraph.mapDataList[sourcePoint].mapID + " 到 " + _MGraph.mapDataList[i].mapID + " 的最短路径长度为: " + dist[i] + "\t 路径为: " + pathStr);}else {console.log('从 ' + _MGraph.mapDataList[sourcePoint].mapID + ' 到 ' + _MGraph.mapDataList[i].mapID + ' 不存在路径      ');}}}private findPath(_MGraph: MGraph, path: number[], i: number, sourcePoint: number, pathVexsList: string[]) {  //前向递归查找路径上的顶点let point;point = path[i];if (point == sourcePoint) return;    								//找到了起点则返回this.findPath(_MGraph, path, point, sourcePoint, pathVexsList);    	//找顶点point的前一个顶点sourcePointpathVexsList.push(_MGraph.mapDataList[point].mapID);}

查找得到路径存如下:

AA 不存在路径           
从 AB 的最短路径长度为: 5	 路径为: A-C-BAC 的最短路径长度为: 3	 路径为: A-CAD 的最短路径长度为: 6	 路径为: A-C-DAE 的最短路径长度为: 7	 路径为: A-C-EAF 的最短路径长度为: 9	 路径为: A-C-D-FBA 的最短路径长度为: 5	 路径为: B-C-ABB 不存在路径           
从 BC 的最短路径长度为: 2	 路径为: B-CBD 的最短路径长度为: 5	 路径为: B-DBE 的最短路径长度为: 6	 路径为: B-C-EBF 的最短路径长度为: 8	 路径为: B-D-FCA 的最短路径长度为: 3	 路径为: C-ACB 的最短路径长度为: 2	 路径为: C-BCC 不存在路径           
从 CD 的最短路径长度为: 3	 路径为: C-DCE 的最短路径长度为: 4	 路径为: C-ECF 的最短路径长度为: 6	 路径为: C-D-FDA 的最短路径长度为: 6	 路径为: D-C-ADB 的最短路径长度为: 5	 路径为: D-BDC 的最短路径长度为: 3	 路径为: D-CDD 不存在路径           
从 DE 的最短路径长度为: 2	 路径为: D-EDF 的最短路径长度为: 3	 路径为: D-FEA 的最短路径长度为: 7	 路径为: E-C-AEB 的最短路径长度为: 6	 路径为: E-C-BEC 的最短路径长度为: 4	 路径为: E-CED 的最短路径长度为: 2	 路径为: E-DEE 不存在路径           
从 EF 的最短路径长度为: 5	 路径为: E-FFA 的最短路径长度为: 9	 路径为: F-D-C-AFB 的最短路径长度为: 8	 路径为: F-D-BFC 的最短路径长度为: 6	 路径为: F-D-CFD 的最短路径长度为: 3	 路径为: F-DFE 的最短路径长度为: 5	 路径为: F-EFF 不存在路径

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1110566

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola