【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现

2024-08-27 03:58

本文主要是介绍【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每次时间久了算法就会淡忘,温故耗时,故做下整理,方便日后取材。

参考网址:

        原理性讲解:https://www.toutiao.com/a6540828594954830340/ 

        基于as3的代码:https://blog.csdn.net/sjt223857130/article/details/77199601

        堆优化理解:https://www.cnblogs.com/jason2003/p/7222182.html

        基于C++的代码:https://blog.csdn.net/qq_35644234/article/details/60870719

        相关注释:https://www.cnblogs.com/zzzPark/p/6060780.html

        代码参考:https://blog.csdn.net/u013052238/article/details/80273042

此文主要讲跨地图间的最短路径,AI 寻路参考 A* 算法:https://blog.csdn.net/u013052238/article/details/53375860,以及A*算法的优化:https://blog.csdn.net/u013052238/article/details/78126019

 

一、以下图作为多地图顶点:

二、地图数据字典配置简要设置如下:

{"A": {"B": {"len": 6},"C": {"len": 3}},"B": {"A": {"len": 6},"C": {"len": 2},"D": {"len": 5}},"C": {"A": {"len": 3},"B": {"len": 2},"D": {"len": 3},"E": {"len": 4}},"D": {"B": {"len": 5},"C": {"len": 3},"E": {"len": 2},"F": {"len": 3}},"E": {"C": {"len": 4},"D": {"len": 2},"F": {"len": 5}},"F": {"D": {"len": 3},"E": {"len": 5}}
}

三、为地图设置Vo类,这里简单设置MapVo类,带有mapId属性(如上的A~F顶点)


/**顶点地图数据 */
class MapVo {public mapID: string = "";
}

四、新建地图数据类存储对应矩阵的相关数据,这里设置MGraph(邻接矩阵)类:

/**邻接矩阵 */
class MGraph {/**邻接矩阵数组 */public edgeMatrixList: number[][];/**顶点数 */public pointNumber: number;/**存放顶点信息 */public mapDataList: MapVo[];public constructor() {this.edgeMatrixList = [];this.mapDataList = [];this.pointNumber = 0;}
}

五、新建类CrossMap初始化地图数据:

class CrossMap {/**地图配置表数据 */private gMapSource: any;/**INFINITY: 无穷大 */private INFINITY: number = 999999;/**邻接矩阵数据 */private gMGraph: MGraph;public constructor(mapSourcelist: any) {this.gMapSource = mapSourcelist;this.gMGraph = new MGraph();this.gMGraph.pointNumber = Object.keys(this.gMapSource).length;for (let point in this.gMapSource) {let _mapVo: MapVo = new MapVo();this.gMGraph.mapDataList.push(_mapVo);_mapVo.mapID = point;}//建立图的邻接矩阵for (let i: number = 0; i < this.gMGraph.pointNumber; i++) {if (!this.gMGraph.edgeMatrixList[i]) {this.gMGraph.edgeMatrixList[i] = [];}for (let j: number = 0; j < this.gMGraph.pointNumber; j++) {//计算i到j的权值let mapI: string = this.gMGraph.mapDataList[i].mapID;let mapJ: string = this.gMGraph.mapDataList[j].mapID;if (this.gMapSource[mapI]) {if (this.gMapSource[mapI][mapJ]) {				//判断地图I到地图J能不能走通this.gMGraph.edgeMatrixList[i][j] = this.gMapSource[mapI][mapJ].len;//权值设为配置// this.gMGraph.edgeMatrixList[i][j] = 1;	//默认给权值都为1continue;}}this.gMGraph.edgeMatrixList[i][j] = this.INFINITY;}}console.log("图的邻接矩阵为:", this.gMGraph.edgeMatrixList);/**导出路径数据 */this.exportPath();}/**保存搜索完后所有相关的路径字典 */private allPathDic: { [mapId: string]: string[] } = {};private exportPath(){......}
}

获得地图的邻接矩阵数据如下:

六、开始迪杰斯特拉算法查找各个点距离其他点的最短路径:

/**保存所有路径字典 */private allPathDic: { [mapId: string]: string[] } = {};private exportPath() {let time = egret.getTimer();let pointNum: number = this.gMGraph.pointNumber;for (let i: number = 0; i < pointNum; i++) {this.dijkstra(i, this.gMGraph);}console.log("跨地图数据生成耗时:" + (egret.getTimer() - time) + "ms");}private dijkstra(sourcePoint: number, _MGraph: MGraph) {let dist: number[] = [];					//从原点sourcePoint到其他的各定点当前的最短路径长度let path: number[] = [];					//path[i]表示从原点到定点i之间最短路径的前驱节点let selectList: number[] = [];  			//选定的顶点的集合let minDistance, point = 0;for (let i = 0; i < _MGraph.pointNumber; i++) {dist[i] = _MGraph.edgeMatrixList[sourcePoint][i];       		//距离初始化selectList[i] = 0;                        						//selectList[]置空  0 表示 i 不在selectList集合中if (_MGraph.edgeMatrixList[sourcePoint][i] < this.INFINITY) {   //路径初始化path[i] = sourcePoint;} else {path[i] = -1;}}selectList[sourcePoint] = 1;                  				//原点编号sourcePoint放入selectList中path[sourcePoint] = 0;for (let i = 0; i < _MGraph.pointNumber; i++) {             //循环直到所有顶点的最短路径都求出minDistance = this.INFINITY;                    		//minDistance置最小长度初值for (let j = 0; j < _MGraph.pointNumber; j++)        	//选取不在selectList中且具有最小距离的顶点pointif (selectList[j] == 0 && dist[j] < minDistance) {point = j;minDistance = dist[j];}selectList[point] = 1;                       		 	//顶点point加入selectList中for (let j = 0; j < _MGraph.pointNumber; j++)        	//修改不在selectList中的顶点的距离if (selectList[j] == 0)if (_MGraph.edgeMatrixList[point][j] < this.INFINITY && dist[point] + _MGraph.edgeMatrixList[point][j] < dist[j]) {dist[j] = dist[point] + _MGraph.edgeMatrixList[point][j];path[j] = point;}}this.putBothpath(_MGraph, dist, path, selectList, _MGraph.pointNumber, sourcePoint);//获取路径}private putBothpath(_MGraph: MGraph, dist: number[], path: number[], selectList: number[], pointNumber: number, sourcePoint: number) {for (let i = 0; i < pointNumber; i++) {if (selectList[i] == 1 && dist[i] < this.INFINITY) {/**路径点列表 */let pathVexsList: string[] = [];pathVexsList.push(_MGraph.mapDataList[sourcePoint].mapID);	//起点this.findPath(_MGraph, path, i, sourcePoint, pathVexsList);pathVexsList.push(_MGraph.mapDataList[i].mapID);			//终点/**测试 */let pathStr: string = "";for (let j: number = 0; j < pathVexsList.length; j++) {pathStr += pathVexsList[j];if (j != pathVexsList.length - 1) {						//不是结尾就加间隔符pathStr += "-";}}/**测试 */let _pathKey: string = _MGraph.mapDataList[sourcePoint].mapID + "-" + _MGraph.mapDataList[i].mapID;if (!this.allPathDic[_pathKey]) {							//不存在this.allPathDic[_pathKey] = pathVexsList;}console.log("从 " + _MGraph.mapDataList[sourcePoint].mapID + " 到 " + _MGraph.mapDataList[i].mapID + " 的最短路径长度为: " + dist[i] + "\t 路径为: " + pathStr);}else {console.log('从 ' + _MGraph.mapDataList[sourcePoint].mapID + ' 到 ' + _MGraph.mapDataList[i].mapID + ' 不存在路径      ');}}}private findPath(_MGraph: MGraph, path: number[], i: number, sourcePoint: number, pathVexsList: string[]) {  //前向递归查找路径上的顶点let point;point = path[i];if (point == sourcePoint) return;    								//找到了起点则返回this.findPath(_MGraph, path, point, sourcePoint, pathVexsList);    	//找顶点point的前一个顶点sourcePointpathVexsList.push(_MGraph.mapDataList[point].mapID);}

查找得到路径存如下:

从 A 到 A 不存在路径           
从 A 到 B 的最短路径长度为: 5	 路径为: A-C-B     
从 A 到 C 的最短路径长度为: 3	 路径为: A-C     
从 A 到 D 的最短路径长度为: 6	 路径为: A-C-D     
从 A 到 E 的最短路径长度为: 7	 路径为: A-C-E     
从 A 到 F 的最短路径长度为: 9	 路径为: A-C-D-F从 B 到 A 的最短路径长度为: 5	 路径为: B-C-A     
从 B 到 B 不存在路径           
从 B 到 C 的最短路径长度为: 2	 路径为: B-C     
从 B 到 D 的最短路径长度为: 5	 路径为: B-D     
从 B 到 E 的最短路径长度为: 6	 路径为: B-C-E     
从 B 到 F 的最短路径长度为: 8	 路径为: B-D-F 从 C 到 A 的最短路径长度为: 3	 路径为: C-A     
从 C 到 B 的最短路径长度为: 2	 路径为: C-B     
从 C 到 C 不存在路径           
从 C 到 D 的最短路径长度为: 3	 路径为: C-D     
从 C 到 E 的最短路径长度为: 4	 路径为: C-E     
从 C 到 F 的最短路径长度为: 6	 路径为: C-D-F 从 D 到 A 的最短路径长度为: 6	 路径为: D-C-A     
从 D 到 B 的最短路径长度为: 5	 路径为: D-B     
从 D 到 C 的最短路径长度为: 3	 路径为: D-C     
从 D 到 D 不存在路径           
从 D 到 E 的最短路径长度为: 2	 路径为: D-E     
从 D 到 F 的最短路径长度为: 3	 路径为: D-F  从 E 到 A 的最短路径长度为: 7	 路径为: E-C-A     
从 E 到 B 的最短路径长度为: 6	 路径为: E-C-B     
从 E 到 C 的最短路径长度为: 4	 路径为: E-C     
从 E 到 D 的最短路径长度为: 2	 路径为: E-D     
从 E 到 E 不存在路径           
从 E 到 F 的最短路径长度为: 5	 路径为: E-F  从 F 到 A 的最短路径长度为: 9	 路径为: F-D-C-A     
从 F 到 B 的最短路径长度为: 8	 路径为: F-D-B     
从 F 到 C 的最短路径长度为: 6	 路径为: F-D-C     
从 F 到 D 的最短路径长度为: 3	 路径为: F-D     
从 F 到 E 的最短路径长度为: 5	 路径为: F-E     
从 F 到 F 不存在路径

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110566

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja