【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现

2024-08-27 03:58

本文主要是介绍【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

每次时间久了算法就会淡忘,温故耗时,故做下整理,方便日后取材。

参考网址:

        原理性讲解:https://www.toutiao.com/a6540828594954830340/ 

        基于as3的代码:https://blog.csdn.net/sjt223857130/article/details/77199601

        堆优化理解:https://www.cnblogs.com/jason2003/p/7222182.html

        基于C++的代码:https://blog.csdn.net/qq_35644234/article/details/60870719

        相关注释:https://www.cnblogs.com/zzzPark/p/6060780.html

        代码参考:https://blog.csdn.net/u013052238/article/details/80273042

此文主要讲跨地图间的最短路径,AI 寻路参考 A* 算法:https://blog.csdn.net/u013052238/article/details/53375860,以及A*算法的优化:https://blog.csdn.net/u013052238/article/details/78126019

 

一、以下图作为多地图顶点:

二、地图数据字典配置简要设置如下:

{"A": {"B": {"len": 6},"C": {"len": 3}},"B": {"A": {"len": 6},"C": {"len": 2},"D": {"len": 5}},"C": {"A": {"len": 3},"B": {"len": 2},"D": {"len": 3},"E": {"len": 4}},"D": {"B": {"len": 5},"C": {"len": 3},"E": {"len": 2},"F": {"len": 3}},"E": {"C": {"len": 4},"D": {"len": 2},"F": {"len": 5}},"F": {"D": {"len": 3},"E": {"len": 5}}
}

三、为地图设置Vo类,这里简单设置MapVo类,带有mapId属性(如上的A~F顶点)


/**顶点地图数据 */
class MapVo {public mapID: string = "";
}

四、新建地图数据类存储对应矩阵的相关数据,这里设置MGraph(邻接矩阵)类:

/**邻接矩阵 */
class MGraph {/**邻接矩阵数组 */public edgeMatrixList: number[][];/**顶点数 */public pointNumber: number;/**存放顶点信息 */public mapDataList: MapVo[];public constructor() {this.edgeMatrixList = [];this.mapDataList = [];this.pointNumber = 0;}
}

五、新建类CrossMap初始化地图数据:

class CrossMap {/**地图配置表数据 */private gMapSource: any;/**INFINITY: 无穷大 */private INFINITY: number = 999999;/**邻接矩阵数据 */private gMGraph: MGraph;public constructor(mapSourcelist: any) {this.gMapSource = mapSourcelist;this.gMGraph = new MGraph();this.gMGraph.pointNumber = Object.keys(this.gMapSource).length;for (let point in this.gMapSource) {let _mapVo: MapVo = new MapVo();this.gMGraph.mapDataList.push(_mapVo);_mapVo.mapID = point;}//建立图的邻接矩阵for (let i: number = 0; i < this.gMGraph.pointNumber; i++) {if (!this.gMGraph.edgeMatrixList[i]) {this.gMGraph.edgeMatrixList[i] = [];}for (let j: number = 0; j < this.gMGraph.pointNumber; j++) {//计算i到j的权值let mapI: string = this.gMGraph.mapDataList[i].mapID;let mapJ: string = this.gMGraph.mapDataList[j].mapID;if (this.gMapSource[mapI]) {if (this.gMapSource[mapI][mapJ]) {				//判断地图I到地图J能不能走通this.gMGraph.edgeMatrixList[i][j] = this.gMapSource[mapI][mapJ].len;//权值设为配置// this.gMGraph.edgeMatrixList[i][j] = 1;	//默认给权值都为1continue;}}this.gMGraph.edgeMatrixList[i][j] = this.INFINITY;}}console.log("图的邻接矩阵为:", this.gMGraph.edgeMatrixList);/**导出路径数据 */this.exportPath();}/**保存搜索完后所有相关的路径字典 */private allPathDic: { [mapId: string]: string[] } = {};private exportPath(){......}
}

获得地图的邻接矩阵数据如下:

六、开始迪杰斯特拉算法查找各个点距离其他点的最短路径:

/**保存所有路径字典 */private allPathDic: { [mapId: string]: string[] } = {};private exportPath() {let time = egret.getTimer();let pointNum: number = this.gMGraph.pointNumber;for (let i: number = 0; i < pointNum; i++) {this.dijkstra(i, this.gMGraph);}console.log("跨地图数据生成耗时:" + (egret.getTimer() - time) + "ms");}private dijkstra(sourcePoint: number, _MGraph: MGraph) {let dist: number[] = [];					//从原点sourcePoint到其他的各定点当前的最短路径长度let path: number[] = [];					//path[i]表示从原点到定点i之间最短路径的前驱节点let selectList: number[] = [];  			//选定的顶点的集合let minDistance, point = 0;for (let i = 0; i < _MGraph.pointNumber; i++) {dist[i] = _MGraph.edgeMatrixList[sourcePoint][i];       		//距离初始化selectList[i] = 0;                        						//selectList[]置空  0 表示 i 不在selectList集合中if (_MGraph.edgeMatrixList[sourcePoint][i] < this.INFINITY) {   //路径初始化path[i] = sourcePoint;} else {path[i] = -1;}}selectList[sourcePoint] = 1;                  				//原点编号sourcePoint放入selectList中path[sourcePoint] = 0;for (let i = 0; i < _MGraph.pointNumber; i++) {             //循环直到所有顶点的最短路径都求出minDistance = this.INFINITY;                    		//minDistance置最小长度初值for (let j = 0; j < _MGraph.pointNumber; j++)        	//选取不在selectList中且具有最小距离的顶点pointif (selectList[j] == 0 && dist[j] < minDistance) {point = j;minDistance = dist[j];}selectList[point] = 1;                       		 	//顶点point加入selectList中for (let j = 0; j < _MGraph.pointNumber; j++)        	//修改不在selectList中的顶点的距离if (selectList[j] == 0)if (_MGraph.edgeMatrixList[point][j] < this.INFINITY && dist[point] + _MGraph.edgeMatrixList[point][j] < dist[j]) {dist[j] = dist[point] + _MGraph.edgeMatrixList[point][j];path[j] = point;}}this.putBothpath(_MGraph, dist, path, selectList, _MGraph.pointNumber, sourcePoint);//获取路径}private putBothpath(_MGraph: MGraph, dist: number[], path: number[], selectList: number[], pointNumber: number, sourcePoint: number) {for (let i = 0; i < pointNumber; i++) {if (selectList[i] == 1 && dist[i] < this.INFINITY) {/**路径点列表 */let pathVexsList: string[] = [];pathVexsList.push(_MGraph.mapDataList[sourcePoint].mapID);	//起点this.findPath(_MGraph, path, i, sourcePoint, pathVexsList);pathVexsList.push(_MGraph.mapDataList[i].mapID);			//终点/**测试 */let pathStr: string = "";for (let j: number = 0; j < pathVexsList.length; j++) {pathStr += pathVexsList[j];if (j != pathVexsList.length - 1) {						//不是结尾就加间隔符pathStr += "-";}}/**测试 */let _pathKey: string = _MGraph.mapDataList[sourcePoint].mapID + "-" + _MGraph.mapDataList[i].mapID;if (!this.allPathDic[_pathKey]) {							//不存在this.allPathDic[_pathKey] = pathVexsList;}console.log("从 " + _MGraph.mapDataList[sourcePoint].mapID + " 到 " + _MGraph.mapDataList[i].mapID + " 的最短路径长度为: " + dist[i] + "\t 路径为: " + pathStr);}else {console.log('从 ' + _MGraph.mapDataList[sourcePoint].mapID + ' 到 ' + _MGraph.mapDataList[i].mapID + ' 不存在路径      ');}}}private findPath(_MGraph: MGraph, path: number[], i: number, sourcePoint: number, pathVexsList: string[]) {  //前向递归查找路径上的顶点let point;point = path[i];if (point == sourcePoint) return;    								//找到了起点则返回this.findPath(_MGraph, path, point, sourcePoint, pathVexsList);    	//找顶点point的前一个顶点sourcePointpathVexsList.push(_MGraph.mapDataList[point].mapID);}

查找得到路径存如下:

从 A 到 A 不存在路径           
从 A 到 B 的最短路径长度为: 5	 路径为: A-C-B     
从 A 到 C 的最短路径长度为: 3	 路径为: A-C     
从 A 到 D 的最短路径长度为: 6	 路径为: A-C-D     
从 A 到 E 的最短路径长度为: 7	 路径为: A-C-E     
从 A 到 F 的最短路径长度为: 9	 路径为: A-C-D-F从 B 到 A 的最短路径长度为: 5	 路径为: B-C-A     
从 B 到 B 不存在路径           
从 B 到 C 的最短路径长度为: 2	 路径为: B-C     
从 B 到 D 的最短路径长度为: 5	 路径为: B-D     
从 B 到 E 的最短路径长度为: 6	 路径为: B-C-E     
从 B 到 F 的最短路径长度为: 8	 路径为: B-D-F 从 C 到 A 的最短路径长度为: 3	 路径为: C-A     
从 C 到 B 的最短路径长度为: 2	 路径为: C-B     
从 C 到 C 不存在路径           
从 C 到 D 的最短路径长度为: 3	 路径为: C-D     
从 C 到 E 的最短路径长度为: 4	 路径为: C-E     
从 C 到 F 的最短路径长度为: 6	 路径为: C-D-F 从 D 到 A 的最短路径长度为: 6	 路径为: D-C-A     
从 D 到 B 的最短路径长度为: 5	 路径为: D-B     
从 D 到 C 的最短路径长度为: 3	 路径为: D-C     
从 D 到 D 不存在路径           
从 D 到 E 的最短路径长度为: 2	 路径为: D-E     
从 D 到 F 的最短路径长度为: 3	 路径为: D-F  从 E 到 A 的最短路径长度为: 7	 路径为: E-C-A     
从 E 到 B 的最短路径长度为: 6	 路径为: E-C-B     
从 E 到 C 的最短路径长度为: 4	 路径为: E-C     
从 E 到 D 的最短路径长度为: 2	 路径为: E-D     
从 E 到 E 不存在路径           
从 E 到 F 的最短路径长度为: 5	 路径为: E-F  从 F 到 A 的最短路径长度为: 9	 路径为: F-D-C-A     
从 F 到 B 的最短路径长度为: 8	 路径为: F-D-B     
从 F 到 C 的最短路径长度为: 6	 路径为: F-D-C     
从 F 到 D 的最短路径长度为: 3	 路径为: F-D     
从 F 到 E 的最短路径长度为: 5	 路径为: F-E     
从 F 到 F 不存在路径

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于【游戏跨场景寻路】基于egret(白鹭)的游戏地图跨场景寻路功能的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110566

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依