机器视觉中的图像积分图及其实现

2024-08-27 00:32

本文主要是介绍机器视觉中的图像积分图及其实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://blog.csdn.net/baimafujinji/article/details/50466224

 

计算机视觉中,人脸检测(Face Detection)是一项常见的任务。Paul Viola和Michael Jones在《Rapid object detection using a Boosted cascade ofsimple features》一文中提出的快速对象识别算法将人脸检测推向了一个新的高度,这种将Adaboost 和Cascade 算法综合运用的实时人脸检测系统,使人脸检测这项工作具有了更为实际的意义和价值。其中,为了加速Haar特征的计算,他们提出了积分图的概念。

坐标点(x, y)的积分图定义为其所对应的图中左上角的像素值之和:

其中ii(x,y)表示像素点(x, y)的积分图,i(x, y)表示原始图像。例如,在Matlab中最简单的计算积分图的方法就是使用累和函数cumsum。下面给出一段简单的示例代码。

>> m = [1, 2, 3;
        4, 5, 6;
        7, 8, 9]

m =

     1     2     3
     4     5     6
     7     8     9

>> cumsum(cumsum(m, 2), 1)

ans =

     1     3     6
     5    12    21
    12    27    45

但是你可以想象,如果按照定义来计算图像的积分图,随着图像尺寸的扩大,计算量的增长是非常惊人的。幸好,我们可以使用一种更加高效的方法来计算积分图。ii(x,y)通过下式迭代进行计算:s(x, y) = s(x, y−1)+i(x,y),ii(x, y) = ii(x-1, y)+s(x,y),其中s(x,y)表示行的积分和,且s(x, -1) =0,ii(-1, y) = 0。求一幅图像的积分和,只需遍历一次图像即可。

积分图元素值计算:由上述公式可知,上图中点“1”的积分图的值是矩形框A中所有像素的像素值之和。点“2”的积分图所对应的值为A+B,点“3”是A+C,点“4”是A+B+C+D,所以D中所有的像素值之和可以用4+1-(2+3)计算。这也是利用积分图来实现Haar特征快速计算的基本原理。假设点4处的坐标为(x,y),那么可以知道点4处积分图ii(x,y)的计算公式为 ii(x, y) = i(x, y) + ii(x-1, y) + ii(x, y-1) - ii(x-1, y-1), 这个公式对应图中的 D + (A+C) + (A+B) - A = A + B + C + D。

下面所示之Matlab代码就是利用上述原理来计算积分图的。

>> [w h] = size(m);
>> %计算积分图
I=zeros(w,h);
for i=1:w
    for j=1:h
        if i==1 && j==1             %积分图像左上角
            I(i,j)=m(i,j);
        elseif i==1 && j~=1         %积分图像第一行
            I(i,j)=I(i,j-1)+m(i,j);
        elseif i~=1 && j==1         %积分图像第一列
            I(i,j)=I(i-1,j)+m(i,j);
        else                        %积分图像其它像素
            I(i,j)=m(i,j)+I(i-1,j)+I(i,j-1)-I(i-1,j-1);  
        end
    end
end
>> I

I =

     1     3     6
     5    12    21
    12    27    45

可见这同前面根据定义算得的结果是一致的。
--------------------- 
作者:白马负金羁 
来源:CSDN 
原文:https://blog.csdn.net/baimafujinji/article/details/50466224 
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于机器视觉中的图像积分图及其实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110118

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja