BMP位图原理深度解析及编程实现RGB565图片格式转换

本文主要是介绍BMP位图原理深度解析及编程实现RGB565图片格式转换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言

        在Windows的画图软件中可以看到,常见的BMP有如下图所示的几种:单色位图16色位图256色位图24位位图,其颜色深度分别为1、4、8、24。

        在一些单片机设备中的LCD显示屏幕中,仅仅支持RGB565这一类的16位颜色深度图像,否则图片显示会有异常。但是在Windows中,并没有直接提供16位颜色深度的BMP图片,需要通过特殊的方式去生成。对于非专业人士,可以使用如PS、GIMP等软件导出RBG565格式的16色位BMP位图。

        但为了生成16位的BMP位图去下载大型的图像处理软件比较费时,对于有程序代码经验的开发者,往往使用编程等方式会更加的方便。因此,本文除了对BMP图片进行讲解外,还将以C语言编程的方式,实现RBG565格式的BMP位图生成转换

2、BMP位图解析

(1)、BMP基础铺垫

        BMP:BMP(位图)是一种没有经过压缩的图像格式。图片的大小取决于图像的分辨率和颜色深度。例如,一个分辨率为1024x768像素,颜色深度为24位(每个像素8位红色、8位绿色、8位蓝色)的BMP图像,其大小约为:1024 * 768 * 3 = 2,359,296字节 ≈ 2.3MB。

        BMP位图因为没有任何的压缩,因此文件尺寸都比较大,不适合在互联网上传播,优点是数据读取出来即可使用,无需任何解码器支持

        虽然BMP格式文件内部存储的就是RGB数据,无需任何解码,但毕竟RGB数据是纯数据,没有任何图片尺寸、色深等具体信息,因此我们需要了解BMP的格式头,在BMP格式头中获取图片的相关信息,然后才能正确处理内涵的RGB数据。

        另外通过研究BMP格式会发现,其RGB的存储遵从一定的规则,比如上下颠倒(扫描方式是从下往上)、4字节行距等,这些在编写程序代码时,都必须要弄清楚,否则图片不能正常显示。

(2)、BMP 格式头解析

        BMP文件开头部分是BMP格式头,里面存放了RGB数据的尺寸、分辨率、色深等重要信息。

        BMP格式头中包含了如下三个结构体:

  • bitmap_header(必有)
  • bitmap_info(必有)
  • rgb_quad(可选,一般没有)

        BMP位图结构体具体定义如下:

struct bitmap_header  // 文件头
{int16_t type; //位图文件的类型,必须为BM(1-2字节)int32_t size; //位图文件的大小,以字节为单位(3-6字节,低位在前)int16_t reserved1;//位图文件保留字,必须为0(7-8字节)int16_t reserved2;//位图文件保留字,必须为0(9-10字节)int32_t offbits; //位图数据的起始位置,以相对于位图(11-14字节,低位在前),文件头的偏移量表示,以字节为单位
}__attribute__((packed));  // 14 字节struct bitmap_info   // 信息头
{int32_t size;   //本结构所占用字节数(15-18字节)int32_t width;  //位图的宽度,以像素为单位(19-22字节)int32_t height; //位图的高度,以像素为单位(23-26字节)int16_t planes; //目标设备的级别,必须为1(27-28字节)int16_t bit_count; //每个像素所需的位数,必须是1(双色),(29-30字节)//4(16色),8(256色)16(高彩色)或24(真彩色)之一int32_t compression;//位图压缩类型,必须是0(不压缩),(31-34字节) //1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一int32_t size_img; //位图的大小(其中包含了为了补齐列数是4的倍数而添加的空字节),以字节为单位(35-38字节)int32_t X_pel;    //位图水平分辨率,每米像素数(39-42字节)int32_t Y_pel;    //位图垂直分辨率,每米像素数(43-46字节)int32_t clrused;  //位图实际使用的颜色表中的颜色数(47-50字节)int32_t clrImportant; //位图显示过程中重要的颜色数(51-54字节)
}__attribute__((packed));// 以下结构体不一定存在于BMP文件中,除非:
// bitmap_info.compression为真
struct rgb_quad
{int8_t blue;    //蓝色的亮度(值范围为0-255)int8_t green;   //绿色的亮度(值范围为0-255)int8_t red;     //红色的亮度(值范围为0-255)int8_t reserved;//保留,必须为0
}__attribute__((packed));

(3)、BMP位图数据体

        BMP位图中,这部分的内容根据BMP位图使用的位数不同而不同,在24位图中直接使用RGB,而其他的小于24位的使用调色板中颜色索引值

        位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行间是从下到上

        位图的一个像素值所占的字节数:

当bit_count = 1时,8个像素占1个字节;

当bit_count = 4时,2个像素占1个字节;

当bit_count = 8时,1个像素占1个字节;

当bit_count = 24时,1个像素占3个字节,按顺序分别为B,G,R;

3、RGB565转换代码

(1)、bmp_convert.h

#ifndef __BMP_CONVERT
#define __BMP_CONVERT#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>typedef struct bitmap_header  // BMP文件头
{int16_t type;       //文件的类型,必须为BM(1-2字节)int32_t size;       //文件的大小,字节为单位(3-6字节,低位在前)int16_t reserved1;  //文件保留字,必须为0(7-8字节)int16_t reserved2;  //文件保留字,必须为0(9-10字节)int32_t offbits;    //文件头的偏移量,以字节为单位(11-14字节,低位在前)
}__attribute__((packed))BMPHeader;  // 14 字节typedef struct bitmap_info   // BMP信息头
{int32_t size;   //本结构所占用字节数(15-18字节)int32_t width;  //位图的宽度,以像素为单位(19-22字节)int32_t height; //位图的高度,以像素为单位(23-26字节)int16_t planes; //目标设备的级别,必须为1(27-28字节)int16_t bit_count;  //每个像素所需的位数(29-30字节)//4(16色),8(256色)16(高彩色)或24(真彩色)之一int32_t compression;//位图压缩类型,必须是0(不压缩),(31-34字节) //1(BI_RLE8压缩类型)或2(BI_RLE4压缩类型)之一int32_t size_img;   //位图的大小(其中包含了为了补齐列数是4的倍数而添加的空字节),以字节为单位(35-38字节)int32_t X_pel;      //位图水平分辨率,每米像素数(39-42字节)int32_t Y_pel;      //位图垂直分辨率,每米像素数(43-46字节)int32_t clrused;    //位图实际使用的颜色表中的颜色数(47-50字节)int32_t clrImportant; //位图显示过程中重要的颜色数(51-54字节)
}__attribute__((packed))BMPInfoHeader;// 以下结构体不一定存在于BMP文件中,除非:
// bitmap_info.compression为真
typedef struct rgb_quad 
{int8_t blue;    //蓝色的亮度(值范围为0-255)int8_t green;   //绿色的亮度(值范围为0-255)int8_t red;     //红色的亮度(值范围为0-255)int8_t reserved;//保留,必须为0
}__attribute__((packed))BMPRgb;typedef struct {unsigned char blue;unsigned char green;unsigned char red;
} RGB24;typedef struct {unsigned short blue : 5;unsigned short green : 6;unsigned short red : 5;
} RGB16;void rgb24_to_rgb16(RGB24 *src, RGB16 *dst, int numPixels);
int bmp24_to_bmp16(char *file_src, char *file_dst);#endif

        在 C 语言中,结构体或联合体的成员通常会按照其自然对齐(natural alignment)进行排列。这意味着编译器会在成员之间插入填充字节,以确保每个成员都位于其对齐要求的边界上。这种对齐可以提高内存访问速度,但也可能导致结构体或联合体占用更多的内存空间

        使用 __attribute__((packed)) 可以避免这种默认的内存填充,使得结构体或联合体的成员紧密排列。这在处理硬件寄存器或其他需要紧凑布局的场景中非常有用。

(2)、bmp_convert.c

#include "bmp_convert.h"void rgb24_to_rgb16(RGB24 *src, RGB16 *dst, int numPixels)
{for (int i = 0; i < numPixels; i++) {dst[i].red = (src[i].red >> 3) & 0x1F;dst[i].green = (src[i].green >> 2) & 0x3F;dst[i].blue = (src[i].blue >> 3) & 0x1F;}
}int bmp24_to_bmp16(char *file_src, char *file_dst)
{FILE *infile = fopen(file_src, "rb");if (!infile) {perror("Error opening input file");return -1;}BMPHeader header;fread(&header, sizeof(header), 1, infile);if (header.type != 0x4D42) {printf("Invalid BMP file\n");return -1;}BMPInfoHeader infoHeader;fread(&infoHeader, sizeof(infoHeader), 1, infile);printf("biBit:%d\n", infoHeader.bit_count);if (infoHeader.bit_count != 24) {printf("Input file is not 24-bit BMP\n");fclose(infile);return -1;}fseek(infile, header.offbits, SEEK_SET);int width = infoHeader.width;int height = infoHeader.height;int numPixels = width * height;RGB24 *rgb24 = (RGB24 *)malloc(numPixels * sizeof(RGB24));fread(rgb24, sizeof(RGB24), numPixels, infile);fclose(infile);RGB16 *rgb16 = (RGB16 *)malloc(numPixels * sizeof(RGB16));rgb24_to_rgb16(rgb24, rgb16, numPixels);FILE *outfile = fopen(file_dst, "wb");if (!outfile) {perror("Error opening output file");free(rgb24);free(rgb16);return -1;}fwrite(&header, sizeof(header), 1, outfile);infoHeader.bit_count = 16;fwrite(&infoHeader, sizeof(infoHeader), 1, outfile);fwrite(rgb16, sizeof(RGB16), numPixels, outfile);fclose(outfile);free(rgb24);free(rgb16);return 0;
}

(3)、程序效果

        如下图所示为24位颜色深度的BMP原图和经过转换后的16位颜色深度BMP图。转换后,肉眼可见的图像部分颜色丢失、且存储空间变小。图片放到支持RGB565格式的显示设备中,转换后的位图效果将会效果更佳。如果需要转换后的图片数据失真较少,需要额外特点的图片处理算法。

这篇关于BMP位图原理深度解析及编程实现RGB565图片格式转换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110105

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解