基于Python的顾客购物数据可视化分析

2024-08-27 00:12

本文主要是介绍基于Python的顾客购物数据可视化分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据可视化分析实验

数据集简介

        本文在实验中考虑到实验使用设备的性能和环境的局限性,采用了kaggle官网上的的消费者购物数据集数据地址:

https://www.kaggle.com/datasets/iamsouravbanerjee/customer-shopping-trends-dataset。

此数据包含了3900条记录,每条记录由18个特征变量组成,具体变量解释如下图所示:

 实验环境搭建

        本文实验主要涉及到顾客购物数据可视化的开发,在采用实验的方式,实验采用的电脑设备为Windows操作系统。实验环境采用了 Pyhton 编程语言以及相关的机器学习框架,实验平台为conda 23.7.4相关系数如表所示:

表3-1实验环境的相关系数

设备

电脑 配置参数

操作系统

Windows

内存

16G

CPU型号

Intel(R) Core(TM) i5-10200H CPU @ 2.40GHz

GPU型号

NVIDIA GeForce GTX 1650

硬盘

系统盘:512 GB

机械硬盘:1T

开发语言

Python 3.9.19

实验平台

conda 23.7.4

可视化分析实验设计

顾客购物数据读取        

      导入实验使用所需包,从kaggle官网上下载实验所需数据保存在shopping_trends_updated.csv文件中,通过pandas库进行读取,并显示前5行数据。

import numpy as np
import pandas as pd 
import os
import matplotlib.pyplot as plt
import seaborn as sns
# 导入数据
data = pd.read_csv(r'C:\Users\leglon\Desktop\购物习惯\shopping_trends_updated.csv')data.head()#显示前五行数据

        查看有关数据集的一些基本信息,对数据进行一个初步了解,如下:

# 查看有关数据集的一些基本信息
def summary(data):print(f'data shape : {data.shape}')sum=pd.DataFrame(data.dtypes,columns=['data type'])sum["Missing"]=data.isnull().sum()sum["%Missing"]=(data.isnull().sum()/len(data))*100sum['#unique']=data.nunique().valuesdesc=pd.DataFrame(data.describe(include="all").transpose())sum['min']=desc['min'].valuessum['max']=desc['max'].valuessum['first value']=data.loc[0].valuessum['second value']=data.loc[1].valuessum['Third value']=data.loc[2].valuesreturn sum
summary(data)

        从图中可以看到此数据集有3900条数据,每条数据有18个特征类型,对特征信息进行输出,如图所示:

data.info()

        对数据进行预处理,去除或修正数据中的错误、缺失值和噪音,以确保数据的准确性和一致性。对实验数据进行查找是否有缺失值。

#查找缺失值
print(data.isnull().sum()) # 查看缺失值

从输出结果来看,此数据完好,没有任何缺失值。

性别数据可视化分析

        对数据中的男女比例进行可视化展示,以帮助商家快速了解客户群体的性别构成。

#查看男女比例,画出柱状图
import matplotlib.pyplot as plt# 统计男女比例
gender_counts = data['Gender'].value_counts()# 打印男女比例
print(gender_counts)
# 绘制柱状图
plt.figure(figsize=(8, 6))
plt.bar(gender_counts.index, gender_counts.values, color=['blue', 'pink'])
plt.xlabel('Gender')
plt.ylabel('Count')
plt.title('Gender Distribution')
plt.xticks(rotation=0)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.show()

        对男女消费比例进行聚类分析,了解不同性别顾客的消费偏好和行为模式,进购出更符合不同性别顾客需求的产品,提升产品的市场竞争力。

# 统计男女比例
gender_counts = data['Gender'].value_counts()
#聚类分析
data['Gender_encoded'] = data['Gender'].map({'Male': 0, 'Female': 1}) # 数据变换with pd.option_context('mode.use_inf_as_na', True):sns.pairplot(data.loc[:,~data.columns.isin(['CustomerID','Gender'])],diag_kind="kde")

购物可视化

        对购物种类的可视化,可以直观地看到哪些商品类别在特定时间段内更受欢迎。这有助于识别市场的消费趋势和热点,帮助商家抓住市场机会。

# 绘制购物占比
counts = data["Category"].value_counts()
colors = plt.cm.Paired(range(len(counts)))
explode = [0.1 if i == counts.values.argmax() else 0 for i in range(len(counts))]
plt.figure(figsize=(10, 8))# 绘制饼图
counts.plot(kind='pie', fontsize=12, colors=colors, explode=explode, autopct='%1.1f%%', startangle=140, shadow=True)
plt.title('Category Distribution', fontsize=16, weight='bold', color='#2F0F5D')# 显示图例
plt.legend(labels=counts.index, loc="best")# 保持饼图为圆形
plt.axis('equal')
plt.show()

        不同性别在购物种类上的差异分析和可视化可以了解不同性别在购物种类上的差异,可以帮助商家更好地理解男性和女性客户的偏好。不同性别在购物种类上的差异可视化图。

# 不同性别在购物种类上的差异
plt.figure(figsize=(8, 3))
sns.countplot(data=data, x='Category', hue='Gender',palette='pastel')
plt.title('Product Category by Gender')
plt.xlabel('Product Category')
plt.ylabel('Count')
plt.legend(title='Gender', labels=data['Gender'].unique())
plt.show()

不同性别对具体商品购物情况可视化图。

# 不同性别对具体商品购物情况
plt.figure(figsize=(22, 8))
sns.countplot(data=data, x='Item Purchased', hue='Gender', palette='Set2')
plt.title('Item Purchased Distribution by Gender', fontsize=18, weight='bold')
plt.xlabel('Item Purchased', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.legend(title='Gender', title_fontsize='13', fontsize='12')
plt.xticks(rotation=45, ha='right')
plt.show()

 销售情况可视化

1不同尺码销售情况

        销售情况可视化展示销售数据可以帮助识别销售趋势,包括季节性变化、长期增长或下降趋势。通过图表,如折线图或面积图,可以清晰地看到销售额随时间的变化,从而制定相应的策略。在本文的数据中,不同尺码的消费情况如图所示:

#对不同型号产品进行分析
# 获取产品型号的销售情况
count = data['Size'].value_counts()
colors = plt.cm.Paired(range(len(count)))
plt.figure(figsize=(8, 8))
plt.pie(count.values, labels=count.index, colors=colors, autopct='%1.1f%%', startangle=140, shadow=True)
plt.title('Sales by Product Size', fontsize=16, weight='bold')
plt.axis('equal')  
plt.show()

2不同性别的销售情况

        不同性别在不同型号上的购物情况可视化,展示了不同性别客户对产品尺寸的偏好,可以帮助商家更好地了解客户需求。

#不同性别在不同型号上的购物情况
plt.figure(figsize=(12, 6))
sns.countplot(data=data, x='Size', hue='Gender', palette='Set2')
plt.title('Shopping Distribution by Product Size and Gender', fontsize=16, weight='bold')
plt.xlabel('Product Size', fontsize=14)
plt.ylabel('Count', fontsize=14)
plt.legend(title='Gender', title_fontsize='13', fontsize='12')
plt.xticks(rotation=45, ha='right')
plt.show()

同商品种类下各型号的销售情况

        通过分析和可视化展示不同商品种类下各型号的销售情况,可以识别出销售模式和趋势。

# 同商品种类下各型号的销售情况
plt.figure(figsize=(15,5))
sns.countplot(data=data,x='Category' ,hue='Size')
plt.title('Category distribution by Gender')
plt.show()

不同季节下的各商品种类销售情况

# 不同季节下的各商品种类销售情况
count = data['Season'].value_counts()
colors = plt.cm.Paired(range(len(count)))
plt.figure(figsize=(10, 8))
count.plot(kind='pie', colors=colors, fontsize=12, explode=(0, 0.1, 0, 0.1), autopct='%1.1f%%', startangle=140, shadow=True)
plt.title('Sales Distribution by Season', fontsize=16, weight='bold')
plt.legend(labels=count.index, loc="best", fontsize=12)
plt.axis('equal')
plt.show()

不同年龄段的购物可视化

# 获取年龄分布数据并按年龄段进行分组
age_bins = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
age_labels = ['0-10', '11-20', '21-30', '31-40', '41-50', '51-60', '61-70', '71-80', '81-90', '91-100']
data['AgeGroup'] = pd.cut(data['Age'], bins=age_bins, labels=age_labels, right=False)
age_group_counts = data['AgeGroup'].value_counts().sort_index()
colors = plt.cm.Paired(range(len(age_group_counts)))
plt.figure(figsize=(10, 8))
age_group_counts.plot(kind='pie', colors=colors, autopct='%1.1f%%', startangle=140, shadow=True)
plt.title('Age Group Distribution', fontsize=16, weight='bold')
plt.legend(labels=age_group_counts.index, loc="best", fontsize=12)
plt.axis('equal')
plt.show()

这篇关于基于Python的顾客购物数据可视化分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1110084

相关文章

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Python获取浏览器Cookies的四种方式小结

《Python获取浏览器Cookies的四种方式小结》在进行Web应用程序测试和开发时,获取浏览器Cookies是一项重要任务,本文我们介绍四种用Python获取浏览器Cookies的方式,具有一定的... 目录什么是 Cookie?1.使用Selenium库获取浏览器Cookies2.使用浏览器开发者工具

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Python Web框架Flask、Streamlit、FastAPI示例详解

《PythonWeb框架Flask、Streamlit、FastAPI示例详解》本文对比分析了Flask、Streamlit和FastAPI三大PythonWeb框架:Flask轻量灵活适合传统应用... 目录概述Flask详解Flask简介安装和基础配置核心概念路由和视图模板系统数据库集成实际示例Stre

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速