遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理

本文主要是介绍遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感-超分-多光谱数据集内容格式链接论文备注
MSRSD包括PleiadesWorldview-2WV-2)、Worldview-3WV-3)、Quickbird-2GeoEye-1DEIMOS等几个卫星获取的大多数公开可用的甚高分辨率(VHR)卫星图像\[2102.09351] A Comprehensive Review of Deep Learning-based Single Image Super-resolution (arxiv.org)A comprehensive review on deep learning based remote sensing image super-resolution methodsMulti-sensor remote sensing dataset 2022CVPR 主要包括VHR级空间分辨率,将图像制备为全色锐化的三条带
CAVE由中国科学院遥感与数字地球研究所开发的合成孔径雷达(SAR)和光学影像数据集ENVI\Single Image Super-Resolution of SAR Images Using a Generative Adversarial Network/
WorldViewDigitalGlobe公司运营的WorldView系列商业遥感卫星提供的高分辨率多光谱和全色影像数据GeoTIFF\Pansharpening of WorldView-3 satellite imagery using convolutional neural network/
Landsat由美国地质调查局(USGS)提供的Landsat卫星影像数据,包括可见光、近红外和热红外等多个波段GeoTIFF\Hyperspectral Image Super-Resolution: A Review/
Harvard Forest由哈佛大学提供的新英格兰地区森林多光谱影像数据GeoTIFF\Hyperspectral super-resolution by coupled spectral unmixing/
SPARCS包含7种类型的遥感地物类型,提取自 Landsat 8 OLI/TIRS,由University of Tennessee Knoxville2014年发布ENVISPARCS | RS-VLMs (irip-buaa.github.io)Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing/
NWPU-RESISC45The NWPU-RESISC45 remote sensing dataset consists of 45 classes of remote sensing scene data, with each class containing 700 images, totaling 31,500 images of size 256 × 256 RGB and spatial resolutions ranging from 0.2 to 30 m. These images from Google Earth are selected from more than 100 countries and regions. The 45 scenario categories are as follows: airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland.\Remote Sensing Image Scene Classification: Benchmark and State of the Art | IEEE Journals & Magazine | IEEE XploreRemote Sensing Image Scene Classification: Benchmark and State of the Art/
iSAIDiSAID: The iSAID dataset consists of 2806 images with different sizes and 655,451 annotated instances. Due to the large size of the original images in the iSAID dataset, we have divided them into 800×800800×800 image patches for training and testing. We have created the SR dataset using bicubic and Gaussian blur to get the LR image with 200×200200×200 sizes. The original training set is used as the training set for the SR task. Additionally, the validation set of iSAID is used as the test set for the SR task. The training set contains a total of 27,286 images and the test set contains a total of 9446 images.\CVPR 2019 Open Access Repository (thecvf.com)iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images/
RSSCN7草地、森林、农田、停车场、住宅区、工业区和河湖.jpghttps://hyper.ai/datasets/5440Deep learning based feature selection for remote sensing scene classification来源于不同季节和天气变化,并以不同的比例进行采样
AID\\AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification | IEEE Journals & Magazine | IEEE XploreAID: A benchmark data set for performance evaluation of aerial scene classification/
RHLAI\\Remote Sensing | Free Full-Text | NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction (mdpi.com)NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction/
DIV2KThe DIV2K dataset includes 800 training images, 100 validation images, and 100 test images, all of which have 2K resolution. We divided the images into 480 × 480 sub-images with non-overlapping regions, and obtained LR images through bicubic downsampling.\CVPR 2017 Open Access Repository (thecvf.com)NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study/
OLI2MSIThe OLI2MSI is a real-world remote sensing image dataset, containing 5225 training LR-HR image pairs and 100 test LR-HR image pairs. The HR images have 480 × 480 resolution and the LR images have a resolution of 180 × 180. The LR images are ground images with a spatial resolution of 30 m, captured by the Operational Land Imager Landsat-8 satellite, and the HR images are ground images with a spatial resolution of 10 m, captured by the Multispectral Instrument Sentinel-2 satellite. Since the original scale factor of the dataset is 3, we used bicubic to obtain LR images for other scale factors.\Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN | Journal of Remote Sensing (science.org)Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN/
the Kaggle open-source remote sensing competition dataset\\https://www.kaggle.com/c/draper-satellite-image-chronology/data//
遥感-超分-Pan数据集内容格式链接论文备注
WorldView-3\GeoTiff\Pansharpening of WorldView-3 Satellite Imagery Using Convolutional Neural Network/
QuickBird\GeoTiff\Pansharpening of QuickBird Satellite Imagery Using the Curvelet Transform/
GaoFen-2\GeoTiff\Pansharpening of GaoFen-2 Satellite Imagery Using Deep Learning/
IKONOSGeoEye公司运营的IKONOS商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Multispectral IKONOS Images via IHS and PCA Transformations/
PléiadesCNES公司运营的Pléiades商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Pléiades Satellite Imagery Using Guided Filtering/
PROBA-V由欧洲空间局运营的PROBA-V中分辨率植被监测卫星的全色和多光谱影像数据GeoTiff\PROBA-V Image Pansharpening Using Convolutional Neural Networks/
Sentinel-2由欧洲空间局运营的Sentinel-2高分辨率多光谱成像卫星的全色和多光谱影像数据GeoTiff\Pansharpening of Sentinel-2 Imagery Using Guided Filtering/
ZY-3由中国遥感卫星地面站提供的中国ZY-3高分辨率测绘型遥感卫星的全色和多光谱影像数据GeoTiff\ZY-3 Satellite Pansharpening Using Convolutional Neural Networks/
DubaiSat-2由阿联酋空间局运营的DubaiSat-2高分辨率遥感卫星的全色和多光谱影像数据GeoTiff\Pansharpening of DubaiSat-2 Imagery Using Deep Learning/
COWCCOWC: The COWC is a large dataset of annotated cars from overhead, which consists of images from Selwyn in New Zealand, Potsdam and Vaihingen in Germany, Columbus and Utah in the United States, and Toronto in Canada. We crop the image to 256×256256×256 and randomly select 80% images in Potsdam for training, 10% images in Potsdam for validating, and others for testing. The LR images of the COWC dataset have a size of 64×6464×64 and 32×3232×32, corresponding to ×4×4 and ×8×8 upscale factor SR tasks, respectively.\A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning | SpringerLinkA Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning/
UCMERCEDhe UCMERCED remote sensing dataset comprises 21 classes, each comprising 100 images, resulting in 2100 images of size 256 × 256 RGB and a spatial resolution of approximately 0.3 m. These are USGS aerial images from 21 U.S. regions. The 21 classes are as follows: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts.\Bag-of-visual-words and spatial extensions for land-use classification | Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (acm.org)Bag-of-visual-words and spatial extensions for land-use classification/
遥感数据集内容格式链接论文备注
UCAS-AOD600 张飞机 & 310 张车辆图像.pnghttps://hyper.ai/datasets/5419Orientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural Network用于飞机和车辆检测,数据集中物体方向分布均匀
Inria Aerial Image Labeling Dataset建筑和非建筑(语义分割)GeoTiffhttps://hyper.ai/datasets/5428\用于城市建筑物检测的遥感图像数据集
RSOD-Dataset飞机、操场、立交桥和油桶四类目标.jpghttps://hyper.ai/datasets/5425\用于遥感图像中物体检测的数据集
NWPU VHR-1011类,飞机、舰船、油罐、棒球场、网球场、篮球场、田径场、港口、桥梁和汽车.jpghttps://hyper.ai/datasets/5422\用于空间物体检测的 10 级地理遥感数据集
RSC11 Dataset包含11 类场景图像,密林、疏林、草原、港口、高层建筑、低层建筑、立交桥、铁路、居民区、道路、储罐.tifhttps://hyper.ai/datasets/5443\一个遥感影像数据集,来源于Google Earth的高分辨率遥感影像,空间分辨率为0.2
遥感资源大放送(下)| 11 个经典遥感数据集_遥感影像建筑物数据集-CSDN博客

这篇关于遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1109590

相关文章

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Python自动化批量重命名与整理文件系统

《Python自动化批量重命名与整理文件系统》这篇文章主要为大家详细介绍了如何使用Python实现一个强大的文件批量重命名与整理工具,帮助开发者自动化这一繁琐过程,有需要的小伙伴可以了解下... 目录简介环境准备项目功能概述代码详细解析1. 导入必要的库2. 配置参数设置3. 创建日志系统4. 安全文件名处

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

SpringSecurity整合redission序列化问题小结(最新整理)

《SpringSecurity整合redission序列化问题小结(最新整理)》文章详解SpringSecurity整合Redisson时的序列化问题,指出需排除官方Jackson依赖,通过自定义反序... 目录1. 前言2. Redission配置2.1 RedissonProperties2.2 Red

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析