遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理

本文主要是介绍遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感-超分-多光谱数据集内容格式链接论文备注
MSRSD包括PleiadesWorldview-2WV-2)、Worldview-3WV-3)、Quickbird-2GeoEye-1DEIMOS等几个卫星获取的大多数公开可用的甚高分辨率(VHR)卫星图像\[2102.09351] A Comprehensive Review of Deep Learning-based Single Image Super-resolution (arxiv.org)A comprehensive review on deep learning based remote sensing image super-resolution methodsMulti-sensor remote sensing dataset 2022CVPR 主要包括VHR级空间分辨率,将图像制备为全色锐化的三条带
CAVE由中国科学院遥感与数字地球研究所开发的合成孔径雷达(SAR)和光学影像数据集ENVI\Single Image Super-Resolution of SAR Images Using a Generative Adversarial Network/
WorldViewDigitalGlobe公司运营的WorldView系列商业遥感卫星提供的高分辨率多光谱和全色影像数据GeoTIFF\Pansharpening of WorldView-3 satellite imagery using convolutional neural network/
Landsat由美国地质调查局(USGS)提供的Landsat卫星影像数据,包括可见光、近红外和热红外等多个波段GeoTIFF\Hyperspectral Image Super-Resolution: A Review/
Harvard Forest由哈佛大学提供的新英格兰地区森林多光谱影像数据GeoTIFF\Hyperspectral super-resolution by coupled spectral unmixing/
SPARCS包含7种类型的遥感地物类型,提取自 Landsat 8 OLI/TIRS,由University of Tennessee Knoxville2014年发布ENVISPARCS | RS-VLMs (irip-buaa.github.io)Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing/
NWPU-RESISC45The NWPU-RESISC45 remote sensing dataset consists of 45 classes of remote sensing scene data, with each class containing 700 images, totaling 31,500 images of size 256 × 256 RGB and spatial resolutions ranging from 0.2 to 30 m. These images from Google Earth are selected from more than 100 countries and regions. The 45 scenario categories are as follows: airplane, airport, baseball diamond, basketball court, beach, bridge, chaparral, church, circular farmland, cloud, commercial area, dense residential, desert, forest, freeway, golf course, ground track field, harbor, industrial area, intersection, island, lake, meadow, medium residential, mobile home park, mountain, overpass, palace, parking lot, railway, railway station, rectangular farmland, river, roundabout, runway, sea ice, ship, snowberg, sparse residential, stadium, storage tank, tennis court, terrace, thermal power station, and wetland.\Remote Sensing Image Scene Classification: Benchmark and State of the Art | IEEE Journals & Magazine | IEEE XploreRemote Sensing Image Scene Classification: Benchmark and State of the Art/
iSAIDiSAID: The iSAID dataset consists of 2806 images with different sizes and 655,451 annotated instances. Due to the large size of the original images in the iSAID dataset, we have divided them into 800×800800×800 image patches for training and testing. We have created the SR dataset using bicubic and Gaussian blur to get the LR image with 200×200200×200 sizes. The original training set is used as the training set for the SR task. Additionally, the validation set of iSAID is used as the test set for the SR task. The training set contains a total of 27,286 images and the test set contains a total of 9446 images.\CVPR 2019 Open Access Repository (thecvf.com)iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images/
RSSCN7草地、森林、农田、停车场、住宅区、工业区和河湖.jpghttps://hyper.ai/datasets/5440Deep learning based feature selection for remote sensing scene classification来源于不同季节和天气变化,并以不同的比例进行采样
AID\\AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification | IEEE Journals & Magazine | IEEE XploreAID: A benchmark data set for performance evaluation of aerial scene classification/
RHLAI\\Remote Sensing | Free Full-Text | NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction (mdpi.com)NDSRGAN: A Novel Dense Generative Adversarial Network for Real Aerial Imagery Super-Resolution Reconstruction/
DIV2KThe DIV2K dataset includes 800 training images, 100 validation images, and 100 test images, all of which have 2K resolution. We divided the images into 480 × 480 sub-images with non-overlapping regions, and obtained LR images through bicubic downsampling.\CVPR 2017 Open Access Repository (thecvf.com)NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study/
OLI2MSIThe OLI2MSI is a real-world remote sensing image dataset, containing 5225 training LR-HR image pairs and 100 test LR-HR image pairs. The HR images have 480 × 480 resolution and the LR images have a resolution of 180 × 180. The LR images are ground images with a spatial resolution of 30 m, captured by the Operational Land Imager Landsat-8 satellite, and the HR images are ground images with a spatial resolution of 10 m, captured by the Multispectral Instrument Sentinel-2 satellite. Since the original scale factor of the dataset is 3, we used bicubic to obtain LR images for other scale factors.\Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN | Journal of Remote Sensing (science.org)Multisensor Remote Sensing Imagery Super-Resolution with Conditional GAN/
the Kaggle open-source remote sensing competition dataset\\https://www.kaggle.com/c/draper-satellite-image-chronology/data//
遥感-超分-Pan数据集内容格式链接论文备注
WorldView-3\GeoTiff\Pansharpening of WorldView-3 Satellite Imagery Using Convolutional Neural Network/
QuickBird\GeoTiff\Pansharpening of QuickBird Satellite Imagery Using the Curvelet Transform/
GaoFen-2\GeoTiff\Pansharpening of GaoFen-2 Satellite Imagery Using Deep Learning/
IKONOSGeoEye公司运营的IKONOS商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Multispectral IKONOS Images via IHS and PCA Transformations/
PléiadesCNES公司运营的Pléiades商业高分辨率遥感卫星提供的全色和多光谱影像数据GeoTiff\Pansharpening of Pléiades Satellite Imagery Using Guided Filtering/
PROBA-V由欧洲空间局运营的PROBA-V中分辨率植被监测卫星的全色和多光谱影像数据GeoTiff\PROBA-V Image Pansharpening Using Convolutional Neural Networks/
Sentinel-2由欧洲空间局运营的Sentinel-2高分辨率多光谱成像卫星的全色和多光谱影像数据GeoTiff\Pansharpening of Sentinel-2 Imagery Using Guided Filtering/
ZY-3由中国遥感卫星地面站提供的中国ZY-3高分辨率测绘型遥感卫星的全色和多光谱影像数据GeoTiff\ZY-3 Satellite Pansharpening Using Convolutional Neural Networks/
DubaiSat-2由阿联酋空间局运营的DubaiSat-2高分辨率遥感卫星的全色和多光谱影像数据GeoTiff\Pansharpening of DubaiSat-2 Imagery Using Deep Learning/
COWCCOWC: The COWC is a large dataset of annotated cars from overhead, which consists of images from Selwyn in New Zealand, Potsdam and Vaihingen in Germany, Columbus and Utah in the United States, and Toronto in Canada. We crop the image to 256×256256×256 and randomly select 80% images in Potsdam for training, 10% images in Potsdam for validating, and others for testing. The LR images of the COWC dataset have a size of 64×6464×64 and 32×3232×32, corresponding to ×4×4 and ×8×8 upscale factor SR tasks, respectively.\A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning | SpringerLinkA Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning/
UCMERCEDhe UCMERCED remote sensing dataset comprises 21 classes, each comprising 100 images, resulting in 2100 images of size 256 × 256 RGB and a spatial resolution of approximately 0.3 m. These are USGS aerial images from 21 U.S. regions. The 21 classes are as follows: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium density residential, mobile home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts.\Bag-of-visual-words and spatial extensions for land-use classification | Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems (acm.org)Bag-of-visual-words and spatial extensions for land-use classification/
遥感数据集内容格式链接论文备注
UCAS-AOD600 张飞机 & 310 张车辆图像.pnghttps://hyper.ai/datasets/5419Orientation Robust Object Detection in Aerial Images Using Deep Convolutional Neural Network用于飞机和车辆检测,数据集中物体方向分布均匀
Inria Aerial Image Labeling Dataset建筑和非建筑(语义分割)GeoTiffhttps://hyper.ai/datasets/5428\用于城市建筑物检测的遥感图像数据集
RSOD-Dataset飞机、操场、立交桥和油桶四类目标.jpghttps://hyper.ai/datasets/5425\用于遥感图像中物体检测的数据集
NWPU VHR-1011类,飞机、舰船、油罐、棒球场、网球场、篮球场、田径场、港口、桥梁和汽车.jpghttps://hyper.ai/datasets/5422\用于空间物体检测的 10 级地理遥感数据集
RSC11 Dataset包含11 类场景图像,密林、疏林、草原、港口、高层建筑、低层建筑、立交桥、铁路、居民区、道路、储罐.tifhttps://hyper.ai/datasets/5443\一个遥感影像数据集,来源于Google Earth的高分辨率遥感影像,空间分辨率为0.2
遥感资源大放送(下)| 11 个经典遥感数据集_遥感影像建筑物数据集-CSDN博客

这篇关于遥感领域remote sensing数据集整理-Super resolution超分辨率任务PAN数据集、多光谱数据集、常见遥感数据集汇总梳理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1109590

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Linux系统管理与进程任务管理方式

《Linux系统管理与进程任务管理方式》本文系统讲解Linux管理核心技能,涵盖引导流程、服务控制(Systemd与GRUB2)、进程管理(前台/后台运行、工具使用)、计划任务(at/cron)及常用... 目录引言一、linux系统引导过程与服务控制1.1 系统引导的五个关键阶段1.2 GRUB2的进化优

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro