OpenCV几何图像变换(11)极坐标转换函数warpPolar()的使用

2024-08-26 16:44

本文主要是介绍OpenCV几何图像变换(11)极坐标转换函数warpPolar()的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

函数将图像重映射到极坐标或半对数极坐标空间。

极坐标重映射参考
用以下转换来转换源图像:

d s t ( ρ , ϕ ) = s r c ( x , y ) dst(\rho , \phi ) = src(x,y) dst(ρ,ϕ)=src(x,y)
其中
I ⃗ = ( x − c e n t e r . x , y − c e n t e r . y ) ϕ = K a n g l e ⋅ angle ( I ⃗ ) ρ = { K l i n ⋅ magnitude ( I ⃗ ) 默认 K l o g ⋅ l o g e ( magnitude ( I ⃗ ) ) i f 半对数 \begin{array}{l} \vec{I} = (x - center.x, \;y - center.y) \\ \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\ \rho = \left\{\begin{matrix} Klin \cdot \texttt{magnitude} (\vec{I}) & 默认 \\ Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; 半对数 \\ \end{matrix}\right. \end{array} I =(xcenter.x,ycenter.y)ϕ=Kangleangle(I )ρ={Klinmagnitude(I )Klogloge(magnitude(I ))默认if半对数
并且
K a n g l e = d s i z e . h e i g h t / 2 Π K l i n = d s i z e . w i d t h / m a x R a d i u s K l o g = d s i z e . w i d t h / l o g e ( m a x R a d i u s ) \begin{array}{l} Kangle = dsize.height / 2\Pi \\ Klin = dsize.width / maxRadius \\ Klog = dsize.width / log_e(maxRadius) \\ \end{array} Kangle=dsize.height/2ΠKlin=dsize.width/maxRadiusKlog=dsize.width/loge(maxRadius)

线性与半对数映射
极坐标映射可以是线性的或半对数的。向标志中添加一个 WarpPolarMode 来指定极坐标映射模式。
线性是默认模式。
半对数映射模拟人类“中央视觉”的特性,即视线中心的视觉敏锐度非常高,而周边视觉的敏锐度较低。

关于 dsize 的选项:

  • 如果 dsize 中的两个值都小于等于 0(默认),目标图像将具有(几乎)与源图像包围圆相同大小的面积:
    d s i z e . a r e a ← ( m a x R a d i u s 2 ⋅ Π ) d s i z e . w i d t h = cvRound ( m a x R a d i u s ) d s i z e . h e i g h t = cvRound ( m a x R a d i u s ⋅ Π ) \begin{array}{l} dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\ dsize.width = \texttt{cvRound}(maxRadius) \\ dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\ \end{array} dsize.area(maxRadius2Π)dsize.width=cvRound(maxRadius)dsize.height=cvRound(maxRadiusΠ)
  • 如果仅 dsize.height 小于等于 0,目标图像面积将与包围圆面积成比例,但按 Kx * Kx 缩放:
    d s i z e . h e i g h t = cvRound ( d s i z e . w i d t h ⋅ Π ) \begin{array}{l} dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\ \end{array} dsize.height=cvRound(dsize.widthΠ)
  • 如果 dsize 中的两个值都大于 0,目标图像将具有给定的大小,因此包围圆的面积将被缩放到 dsize 大小。

反向映射:
你可以通过向标志中添加 WARP_INVERSE_MAP 来获得反向映射。

 // direct transformwarpPolar(src, lin_polar_img, Size(),center, maxRadius, flags);                     // linear PolarwarpPolar(src, log_polar_img, Size(),center, maxRadius, flags + WARP_POLAR_LOG);    // semilog Polar// inverse transformwarpPolar(lin_polar_img, recovered_lin_polar_img, src.size(), center, maxRadius, flags + WARP_INVERSE_MAP);warpPolar(log_polar_img, recovered_log_polar, src.size(), center, maxRadius, flags + WARP_POLAR_LOG + WARP_INVERSE_MAP);

另外,要从极坐标映射坐标 (rho, phi) 计算原始坐标 (x, y):

   double angleRad, magnitude;double Kangle = dst.rows / CV_2PI;angleRad = phi / Kangle;if (flags & WARP_POLAR_LOG){double Klog = dst.cols / std::log(maxRadius);magnitude = std::exp(rho / Klog);}else{double Klin = dst.cols / maxRadius;magnitude = rho / Klin;}int x = cvRound(center.x + magnitude * cos(angleRad));int y = cvRound(center.y + magnitude * sin(angleRad));

在OpenCV中,warpPolar函数用于将图像从笛卡尔坐标系转换到极坐标系或从极坐标系转换回笛卡尔坐标系。这种变换对于进行圆形图像处理非常有用,例如检测圆环状特征或进行图像的径向滤波。

函数原型

void cv::warpPolar	
(InputArray 	src,OutputArray 	dst,Size 	dsize,Point2f 	center,double 	maxRadius,int 	flags 
)		

参数

  • 参数src 源图像。
  • 参数dst 目标图像。它将具有与 src 相同的类型。
  • 参数 dsize 目标图像的大小(参见描述中的有效选项)。
  • 参数center 转换的中心点。
  • 参数maxRadius 包围圆的半径来进行转换。它还确定了逆向的幅度比例参数。
  • flags: 插值方法的组合,InterpolationFlags + WarpPolarMode。
    • 添加 WARP_POLAR_LINEAR 来选择线性极坐标映射(默认)
    • 添加 WARP_POLAR_LOG 来选择半对数极坐标映射
    • 添加 WARP_INVERSE_MAP 来进行反向映射

注意事项
该函数不能原地操作。
为了计算幅度和角度(以度为单位),内部使用 cartToPolar 函数,因此角度范围是从 0 到 360 度,精度约为 0.3 度。
此函数使用 remap。由于当前实现的限制,输入和输出图像的大小应该小于 32767x32767。

代码示例


#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/opencv.hpp>using namespace cv;int main( int argc, char** argv )
{// 读取图像Mat image = imread( "/media/dingxin/data/study/OpenCV/sources/images/circle2.jpg", IMREAD_GRAYSCALE );if ( image.empty() ){std::cerr << "Error: Could not open or find the image." << std::endl;return -1;}// 设置极坐标变换的中心点Point2f center( image.cols / 2.0, image.rows / 2.0 );// 设置最大半径double maxRadius = std::min( image.cols, image.rows ) / 2.0;// 设置输出图像的大小Size dsize( 360, maxRadius );  // 360度,半径为最大半径// 创建输出图像Mat polarImage;// 应用极坐标变换warpPolar( image, polarImage, dsize, center, maxRadius, WARP_POLAR_LINEAR + INTER_LINEAR);// 显示结果namedWindow( "Original Image", WINDOW_NORMAL );imshow( "Original Image", image );namedWindow( "Polar Image", WINDOW_NORMAL );imshow( "Polar Image", polarImage );waitKey( 0 );return 0;
}

运行结果

在这里插入图片描述

这篇关于OpenCV几何图像变换(11)极坐标转换函数warpPolar()的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109114

相关文章

SpringBoot中使用Flux实现流式返回的方法小结

《SpringBoot中使用Flux实现流式返回的方法小结》文章介绍流式返回(StreamingResponse)在SpringBoot中通过Flux实现,优势包括提升用户体验、降低内存消耗、支持长连... 目录背景流式返回的核心概念与优势1. 提升用户体验2. 降低内存消耗3. 支持长连接与实时通信在Sp

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

nginx启动命令和默认配置文件的使用

《nginx启动命令和默认配置文件的使用》:本文主要介绍nginx启动命令和默认配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录常见命令nginx.conf配置文件location匹配规则图片服务器总结常见命令# 默认配置文件启动./nginx

在Windows上使用qemu安装ubuntu24.04服务器的详细指南

《在Windows上使用qemu安装ubuntu24.04服务器的详细指南》本文介绍了在Windows上使用QEMU安装Ubuntu24.04的全流程:安装QEMU、准备ISO镜像、创建虚拟磁盘、配置... 目录1. 安装QEMU环境2. 准备Ubuntu 24.04镜像3. 启动QEMU安装Ubuntu4

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间